Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2013

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from \~20 keV to \~1 MeV. RBSPICE will also measure electrons over the energy range \~25 keV to \~1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

2006

Storm time evolution of the outer radiation belt: Transport and losses

During geomagnetic storms the magnetic field of the inner magnetosphere exhibits large-scale variations over timescales from minutes to days. Being mainly controlled by the magnetic field the motion of relativistic electrons of the outer radiation belt can be highly susceptible to its variations. This paper investigates evolution of the outer belt during the 7 September 2002 storm. Evolution of electron phase space density is calculated with the use of a test-particle simulation in storm time magnetic and electric fields. The results show that storm time intensification of the ring current produces a large impact on the belt. In contrast to the conventional Dst effect the dominant effects are nonadiabatic and lead to profound and irreversible transformations of the belt. The diamagnetic influence of the partial ring current leads to expansion of electron drift orbits such that their paths intersect the magnetopause leading to rapid electron losses. About 2.5 hr after the storm onset most of the electrons outside L = 5 are lost. The partial ring current pressure also leads to an electron trap in the dayside magnetosphere where electrons stay on closed dayside drift orbits for as long as 11 hours. These sequestered electrons are reinjected into the outer belt due to partial recovery of the ring current. The third adiabatic invariant of these electrons exhibits rapid jumps and changes sign. These jumps produce localized peaks in the L*-profile of electron phase space density which have previously been considered as an observable indication of local electron acceleration.

Ukhorskiy, A; Anderson, B.; Brandt, P.; Tsyganenko, N.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011690

Magnetopause Losses



  1