Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2020

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmidnight sector. We estimate peak low-altitude ion flux from ENAs near the Earth s limb. For a local perspective, we use spin-averaged proton fluxes from the RBSP A Helium Oxygen Proton Electron (HOPE) spectrometer. We find that the 1000 UT dipolarization triggered an abrupt and significant increase in low-altitude ions and a gradual but modest increase in the high-altitude RC. The relative strength and timing of the low versus high-altitude flux indicate that the dipolarization isotropized the injected ions and initially filled the loss cone. The substorm injection brought cooler ions in from the magnetotail, reducing the peak energy at both low and high altitudes. The post-dipolarization low-altitude flux exhibited a decay rate dispersion favoring longer decay times at lower energies, possibly caused by growth of the low energy RC providing enhanced flux into the loss cone. A variety of finer scale local injection structures were observed in the high-altitude RC both before and after the dipolarization, and the average system level RC intensity increased after 1000 UT.

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmidnight sector. We estimate peak low-altitude ion flux from ENAs near the Earth s limb. For a local perspective, we use spin-averaged proton fluxes from the RBSP A Helium Oxygen Proton Electron (HOPE) spectrometer. We find that the 1000 UT dipolarization triggered an abrupt and significant increase in low-altitude ions and a gradual but modest increase in the high-altitude RC. The relative strength and timing of the low versus high-altitude flux indicate that the dipolarization isotropized the injected ions and initially filled the loss cone. The substorm injection brought cooler ions in from the magnetotail, reducing the peak energy at both low and high altitudes. The post-dipolarization low-altitude flux exhibited a decay rate dispersion favoring longer decay times at lower energies, possibly caused by growth of the low energy RC providing enhanced flux into the loss cone. A variety of finer scale local injection structures were observed in the high-altitude RC both before and after the dipolarization, and the average system level RC intensity increased after 1000 UT.

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current

2019

Diffuse Auroral Electron and Ion Precipitation Effects on RCM-E Comparisons with Satellite Data During the March 17, 2013 Storm

Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self-consistent Rice Convection Model Equilibrium (RCM-E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnight where the partial ring current field has perturbed the magnetic field. The precipitating protons likewise contribute sporadically to the storm time Hall and Pedersen conductance in localized regions whereas the precipitating electrons are the dominate storm time contributor to enhanced Hall and Pedersen conductance at auroral magnetic latitudes on the night and morning side. The RCM-E model can reproduce general features of the Van Allen Probe/MagEIS observed trapped electron differential flux spectrograms over energies of ~37 to 150 keV. The simulations with a parameterized electron loss model also reproduce reasonably well the storm time Defense Meteorological Satellite Program integrated electron energy flux at 850 km at satellite crossings from predawn to midmorning. However, model-data agreement is not as good from dusk to premidnight where there are large uncertainties in the electron loss model.

Chen, Margaret; Lemon, Colby; Hecht, James; Sazykin, Stanislav; Wolf, Richard; Boyd, Alexander; Valek, Philip;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026545

diffuse aurora; electron and ion precipitation; field-line curvature scattering; inner magnetospheric electric field; ionospheric conductance; simulations and data comparisons; Van Allen Probes

2017

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

2015

First joint in situ and global observations of the medium-energy oxygen and hydrogen in the inner magnetosphere

We present the first simultaneous observations of the in situ ions and global Energetic Neutral Atom (ENA) images of the composition-separated, medium-energy (~1\textendash50 keV) particle populations of the inner magnetosphere. The ENA emissions are mapped into L shell/magnetic local time space based on the exospheric density along the line of sight (LOS). The ENA measurement can then be scaled to determine an average ion flux along a given LOS. The in situ ion flux tends to be larger than the scaled ENAs at the same local time. This indicates that the ion population is more concentrated in the Van Allen Probes orbital plane than distributed along the Two Wide-angle Imaging Neutral-atom Spectrometers LOS. For the large storm of 14 November 2012, we observe that the concentration of O (in situ ions and ENAs) increases during the storm\textquoterights main phase with a relatively larger increase than H. The ratio of the O+/H+ can be measured both from the in situ observations and from the ENA images. During the main phase, this O+/H+ increase is initially seen near midnight, but when the storm reaches its peak value the O+/H+ ratio increases across all local times, with the largest at dusk and dawn.

Valek, P.; Goldstein, J.; Jahn, J.-M.; McComas, D.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021151

ENAs; oxygen; storms; TWINS; Van Allen Probes

2014

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5\textendash9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes



  1