Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2018

An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013

We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May \textendash 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during storm main phase since the maximum observable equatorial pitch-angle from RBSP is not larger than ~ 40\textdegree during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.

Bin Kang, Suk-; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024879

CIMI model; drift loss; dropout; magnetopause shadowing; pitch-angle distribution (PAD); RBSP; Van Allen Probes

2015

Electron distribution function formation in regions of diffuse aurora

The precipitation of high-energy magnetospheric electrons (E \~ 600 eV\textendash10 KeV) in the diffuse aurora contributes significant energy flux into the Earth\textquoterights ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, \~700\textendash800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly influence the initially precipitating flux at the upper ionospheric boundary (700\textendash800 km) and the resultant population of secondary electrons and electrons cascading toward lower energies. In this paper, we present the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E < 600 eV) and its energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account, for the first time, the formation of the electron distribution function in the diffuse auroral region, beginning with the primary injection of plasma sheet electrons via both electrostatic electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and including their subsequent multiple atmospheric reflections in the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is key in forming the electron distribution function in the diffuse auroral region.

Khazanov, G.; Tripathi, A.; Sibeck, D.; Himwich, E.; Glocer, A.; Singhal, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021728

diffuse aurora; electron distribution; Wave-particle interaction

Multipoint observations of the open-closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the November 14 th 2012 geomagnetic storm

The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dropped to less than -100nT with the IMF being strongly southward (Bz = -15nT) and eastward (By = 20 nT). Observations by LANL GEO spacecraft at geosynchronous orbit also show lobe encounters in the northern hemisphere and on the dusk flank. The two spacecraft configuration provides strong evidence that these periodic entries into the lobe are the result of local expansions of the OCB propagating from the tail and passing over the Van Allen Probes. Examination of pitch angle binned data from the HOPE instrument shows spatially large, accelerated ion structures occurring near simultaneously at both spacecraft, with the presence of oxygen indicating that they have an ionospheric source. The outflows are dispersed in energy and are detected when the spacecraft are on both open and closed field lines. These events provide a chance to examine the global magnetic field topology in detail, as well as smaller scale spatial and temporal characteristics of the OCB, allowing us to constrain the position of the open/closed field line boundary and compare it to a global MHD model using a novel method. This technique shows that the model can reproduce a periodic approach and retreat of the OCB from the spacecraft but can overestimate its distance by as much as 3 RE. The model appears to simulate the dynamic processes that cause the spacecraft to encounter the lobe but incorrectly maps the overall topology of the magnetosphere during these extreme conditions.

Dixon, P.; MacDonald, E.; Funsten, H.; Glocer, A.; Grande, M.; Kletzing, C.; Larsen, B.; Reeves, G.; Skoug, R.; Spence, H.; Thomsen, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020883

Lobes; Magnetosphere; Modelling; Open/closed field line boundary; Van Allen Probes

The global context of the 14 November, 2012 storm event

From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause ~20\textendash30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in-situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in-situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet.

Hwang, K.-J.; Sibeck, D.; Fok, M.-C.; Zheng, Y.; Nishimura, Y.; Lee, J.-J.; Glocer, A.; Partamies, N.; Singer, H.; Reeves, G.; Mitchell, D.; Kletzing, C.; Onsager, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020826

Van Allen Probes

2014

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5\textendash9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes



  1