• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 12 entries in the Bibliography.

Showing entries from 1 through 12


Realistic electron diffusion rates and lifetimes due to scattering by electron holes

AbstractPlasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere-ionosphere coupling. Recent studies have shown that electron phase space holes can pitch-angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018). In this study, we have re-evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root-mean-square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at , we find that when 4 mV/m electron lifetimes can drop below one hour and are mostly within strong diffusion limits at energies below 10 keV. During an injection observed by the THEMIS spacecraft at , electron holes with even typical intensities (1 mV/m) can deplete low-energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

Shen, Yangyang; Vasko, Ivan; Artemyev, Anton; Malaspina, David; Chu, Xiangning; Angelopoulos, Vassilis; Zhang, Xiao-Jia;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2021

YEAR: 2021     DOI:

diffuse aurora; electron pitch-angle scattering; electron phase space hole; Wave-particle interaction; electron lifetimes; broadband electrostatic fluctuations; Van Allen Probes


Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017GL076957

Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves

Reply to Comment by Nishimura Et Al.

Nishimura et al. (2010,, 2011,, 2013,, and in their comment, hereafter called N18) have suggested that chorus waves interact with equatorial electrons to produce pulsating auroras. We agree that chorus can scatter electrons >10 keV, as do Time Domain Structures (TDSs). Lower-energy electrons occurring in pulsating auroras cannot be produced by chorus, but such electrons are scattered and accelerated by TDS. TDSs often occur with chorus and have power in their spectra at chorus frequencies. Thus, the absence of power at low frequencies is not evidence that TDSs are absent, as an example shows. Through examination of equatorial electric field waveforms and electron pitch angle distributions measured on the Time History of Events and Macroscale Interactions during Substorms satellites (in place of examining field and particle spectra, as done by Nishimura et al.), we show that chorus cannot produce the field-aligned electrons associated with pulsating auroras in the Nishimura et al. (2010, events, but TDSs can. Equatorial field-aligned electron distributions associated with pulsating auroras and created by TDS in the absence of chorus or any other wave at the equator are also shown.

Mozer, F.; Hull, A.; Lejosne, S.; Vasko, I;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2018JA025218

chorus cannot precipitate electrons observed in pulsating auroras; time domain structures cause electron precipitation in pulsating auroras; Van Allen Probes



On December 11, 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 second burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One-second averaged variations of the chorus intensity and the microburst electron flux were well-correlated. The low altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, one second averaged, low altitude electron flux. However the large amplitude, <0.5 second duration, low altitude electron pulses require non-linear processes for their explanation.

Mozer, F.; Agapitov, O.; Blake, J.; Vasko, I;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL076120

chorus makes microbursts; Van Allen Probes

Pulsating auroras produced by interactions of electrons and time domain structures

Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data and a 4 h interval of Van Allen Probe measurements have been analyzed. During these events, lower band chorus waves produced only negligible modifications of the equatorial electron distributions. During the several TDS events, the equatorial 0.1\textendash3 keV electrons became magnetic field-aligned. Kinetic Alfven waves may also have had a small electron scattering effect. The conclusion of these studies is that time domain structures caused the most important equatorial scattering of ~1 keV electrons toward the loss cone to provide the main electron contribution to pulsating auroras. Chorus wave scattering may have provided part of the highest energy (>10 keV) electrons in such auroras.

Mozer, F.; Agapitov, O.; Hull, A.; Lejosne, S.; Vasko, I;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024223

pulsating auroras; Van Allen Probes; wave scattering

Electron-acoustic solitons and double layers in the inner magnetosphere

The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV) is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron-acoustic waves (existing due to the presence of cold and hot electrons) and follow the Korteweg-de Vries (KdV) dispersion relation derived for the observed plasma conditions (electron energy spectrum is a power law between about 100 eV and 10 keV and Maxwellian above 10 keV). The ESW spatial scales are in general agreement with the KdV theory. We interpret the asymmetric ESW in terms of electron-acoustic solitons and double layers (shocks waves).

Vasko, I; Agapitov, O.; Mozer, F.; Bonnell, J.; Artemyev, A.; Krasnoselskikh, V.; Reeves, G.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL074026

double layers; electron-acoustic waves; inner magnetosphere; solitons; Van Allen Probes

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of math formula5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L \~ 5\textendash8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes


Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that is of the order of hundred Debye lengths. The perpendicular to parallel scale ratio is larger than one in a qualitative agreement with the theoretical scaling relation. The amplitudes of EH electrostatic potentials are generally below 100 V. We determine the properties of the electron population trapped within EHs by making use of the Bernstein-Green-Kruskal analysis and via analysis of EH magnetic field signatures. The density of the trapped electron population is on average 20\% of the background electron density. The perpendicular temperature of the trapped population is on average 300 eV and is larger for faster EHs. We show that energy losses of untrapped electrons scattered by EHs in the inhomogeneous background magnetic field may balance the energization of trapped electrons.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Near-Relativistic Electron Acceleration by Landau Trapping in Time Domain Structures

Data from the Van Allen Probes have provided the first extensive evidence of nonlinear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (less than a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric field of time domain structures (TDSs) traveling at high speeds (~20,000 km/s). This observational evidence is supported by simulations and discussion of the source and spatial extent of the fast TDS. This result indicates the possibility that the electrostatic fields in TDS may generate the electron seed population for cyclotron resonance interaction with chorus waves to make higher-energy electrons.

Mozer, F.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Vasko, I.;

Published by: Geophysical Research Letters      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015GL067316

Acceleration; Van Allen Probes


Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021644

double layers; Fermi mechanism; field-aligned pitch angle distributions; outer radiation belt; thermal electron acceleration; Van Allen Probes

Magnetic field depression within electron holes

We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65\% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T||\~2. We argue that the observed electron holes could be generated due to injections of highly anisotropic plasma sheet electrons into the outer radiation belt. These electron holes may present a source of the seed population due to transport of trapped electrons to higher latitudes and can be potentially used for distant probing of plasma properties in their source region.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Jovanovic, D.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063370

diamagnetic effect; electron hole; outer radiation belt; Van Allen Probes

Time Domain Structures: what and where they are, what they do, and how they are made

Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are >=1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field-aligned electrons that may be responsible for some types of auroras. These field-aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric field. The second process is Fermi acceleration due to reflection of electrons by the TDS. The third process is an effective and rapid pitch angle scattering resulting from electron interactions with the perpendicular and parallel electric and magnetic fields of many TDS. TDS are created by current-driven and beam-related instabilities and by whistler-related processes such as parametric decay of whistlers and non-linear evolution from oblique whistlers. New results on the temporal relationship of TDS and particle injections, types of field-aligned electron pitch angle distributions produced by TDS, the mechanisms for generation of field-aligned distributions by TDS, the maximum energies of field-aligned electrons created by TDS in the absence of whistler mode waves, TDS generation by oblique whistlers and three-wave-parametric decay, and the correlation between TDS and auroral particle precipitation, are presented.

Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063946

Time Domain Structures; TDS