Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2758 entries in the Bibliography.


Showing entries from 2751 through 2758


1972

Inner-Zone Energetic-Electron Repopulation by Radial Diffusion

A quantitative study of the intrusion of natural electrons into the inner radiation zone during and after the geomagnetic storm of September 2, 1966, shows that the transport is consistent with a radial-diffusion mechanism in which the first two invariants are conserved. Except for the 3-day period of the storm main phase when data were missing, the radial-diffusion coefficient is D = 2.7 \texttimes 10-5 L7.9 μ-0.5 day-1 in the range 1.7 <= L <= 2.6 and 13.3 <= μ <= 27.4 Mev gauss-1. This value could be produced by variation of a large-scale electric field across the magnetosphere having an amplitude of 0.28 mv / m and a period of 1600 sec. Electric fields having approximately these characteristics have been inferred from previous observations of the motion of whistler ducts within the plasmapause. If fields of this amplitude and period exist throughout the magnetosphere, the radial diffusion of all geomagnetically trapped particles except the high-energy inner-zone protons is strongly influenced by electric-field variations. A comprehensive review of previously reported radial-diffusion coefficients shows reasonable agreement for L less than about 3.0, but serious discrepancies among reported values exist for determinations made in the outer zone. These discrepancies cannot be explained by the simple theory of radial diffusion due to variation of large-scale electric or magnetic fields.

Tomassian, Albert; Farley, Thomas; Vampola, Alfred;

Published by: Journal of Geophysical Research      Published on: 07/1972

YEAR: 1972     DOI: 10.1029/JA077i019p03441

Radial Transport

1970

Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation

The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17\textendash18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant \textmu. For each value of \textmu, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a factor of 10 than the value recently found by Newkirk and Walt in a separate analysis of 1.6-Mev electron data obtained during the same time period on another satellite. The electron lifetimes are found to be strong functions of L, with 4- to 6-day lifetimes observed at the higher L values (4.6\textendash4.8).

Lanzerotti, L.; Maclennan, C.; Schulz, Michael;

Published by: Journal of Geophysical Research      Published on: 10/1970

YEAR: 1970     DOI: 10.1029/JA075i028p05351

Radial Transport

1969

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport



  51      52      53      54      55      56