• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when compared to the LIE for >800 keV electrons that was found consistently at ~1.5 RE outside of the innermost Lpp. The IE of 10s keV electrons was observed before the IE of 100s keV electrons, and the IE of >800 keV electrons was observed on average 12.6\textpm2.3 hours after the occurrence of the earliest IE event. In addition, we report an overall electron (~30 keV to ~2 MeV) flux increase outside the plasmasphere during the selected storm periods, in contrast to the little change of energy spectrum evolution inside the plasmasphere; this demonstrates the important role of the plasmasphere in shaping energetic electron dynamics. Our investigation of the LIE-Lpp relationship also provides insights into the underlying physical processes responsible for the dynamics of tens keV to >MeV electrons.

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes


What effect do substorms have on the content of the radiation belts?

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV \textquotedblleftseed\textquotedblright population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1\textendash3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

Forsyth, C.; Rae, I.; Murphy, K.; Freeman, M.; Huang, C.-L.; Spence, H.; Boyd, A.; Coxon, J.; Jackman, C.; Kalmoni, N.; Watt, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022620

enhancements; losses; Radiation belts; substorm