Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 107 entries in the Bibliography.


Showing entries from 101 through 107


2015

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

Modeling sub-auroral polarization streams (SAPS) during the March 17, 2013 storm

The sub-auroral polarization streams (SAPS) are one of the most important features in representing magnetosphere-ionosphere coupling processes. In this study, we use a state-of-the-art modeling framework that couples an inner magnetospheric ring current model RAM-SCB with a global MHD model BATS-R-US and an ionospheric potential solver to study the SAPS that occurred during the March 17, 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the mid-latitude regions. Results show that the model captures the SAPS at sub-auroral latitudes, where Region-2 field-aligned currents (FACs) flow down to the ionosphere and the conductance is lower than in the higher-latitude auroral zone. Comparisons to observations such as FACs observed by AMPERE, cross-track ion drift from DMSP, and in-situ electric field observations from the Van Allen Probes indicate that the model generally reproduces the global dynamics of the Region-2 FACs, the position of SAPS along the DMSP, and the location of the SAPS electric field around L of 3.0 in the inner magnetosphere near the equator. While the model demonstrates double westward flow channels in the dusk sector (the higher-latitude auroral convection and the sub-auroral SAPS) and captures the mechanism of the SAPS, the comparison with ion drifts along DMSP trajectories shows an underestimate of the magnitude of the SAPS and the sensitivity to the specific location and time. The comparison of the SAPS electric field with that measured from the Van Allen Probes shows that the simulated SAPS electric field penetrates deeper than in reality, implying that the shielding from the Region-2 FACs in the model is not well represented. Possible solutions in future studies to improve the modeling capability include implementing a self-consistent ionospheric conductivity module from particle precipitation, coupling with the thermosphere-ionosphere chemical processes, and connecting the ionosphere with the inner magnetosphere by the stronger Region-2 FACs calculated in the inner magnetosphere model.

Yu, Yiqun; Jordanova, Vania; Zou, Shasha; Heelis, Roderick; Ruohoniemi, Mike; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020371

sub-auroral polarization streams; Van Allen Probes

2014

Model of electromagnetic ion cyclotron waves in the inner magnetosphere

The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, nonbounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the \textquotedblleftbi-ion latitudes\textquotedblright (the latitudes where the given wave frequency is equal to the O+\textendashHe+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth\textquoterights magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultralow frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi field aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at bi-ion latitudes, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for θ > 82\textdegree, where a growth rate γ > 10-2rad/s is frequently observed. The instability is driven by the loss cone feature in the RC O+ distribution function, where ∂F/∂v⟂>0 for the resonating O+. (4) The oblique and intense He+-mode EMIC waves generated by RC O+ in the region L≈2\textendash3 may have an implication to the energetic particle loss in the inner radiation belt.

Gamayunov, K.; Engebretson, M.; Zhang, M.; Rassoul, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020032

electromagnetic ion cyclotron waves; outer radiation belt; ring current

Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations

Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection model. In agreement with Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations, RAM-SCB indicates that the large-scale magnetic field is depressed as close as \~4.5 RE during even a moderate storm. Regions of electromagnetic ion cyclotron instability are predicted on the duskside from \~6 to \~9 RE, indicating that previous studies confined to geosynchronous orbit may have underestimated their scattering effect on the energetic particles.

Jordanova, V.; Yu, Y.; Niehof, J.; Skoug, R.; Reeves, G.; Kletzing, C.; Fennell, J.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2014

YEAR: 2014     DOI: 10.1002/2014GL059533

Van Allen Probes

Application and testing of the L * neural network with the self-consistent magnetic field model of RAM-SCB

We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L* neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained networks and validated by the tracing method in the International Radiation Belt Environment Modeling (IRBEM) library. The accuracy of all L* neural networks with different underlying magnetic field models is evaluated by applying the electron phase space density (PSD)-matching technique derived from the Liouville\textquoterights theorem to the Van Allen Probes observations. Results indicate that the uncertainty in the predicted L* is statistically (75\%) below 0.7 with a median value mostly below 0.2 and the median absolute deviation around 0.15, regardless of the underlying magnetic field model. We found that such an uncertainty in the calculated L* value can shift the peak location of electron phase space density (PSD) profile by 0.2 RE radially but with its shape nearly preserved.

Yu, Yiqun; Koller, Josef; Jordanova, Vania; Zaharia, Sorin; Friedel, Reinhard; Morley, Steven; Chen, Yue; Baker, Daniel; Reeves, Geoffrey; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019350

Van Allen Probes

The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm

We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convection electric field, are necessary to develop a strong ring current. Comparisons with Van Allen Probes observations show that our model reasonably well captures dispersed electron injections and the global Dst index.

Yu, Yiqun; Jordanova, Vania; Welling, Dan; Larsen, Brian; Claudepierre, Seth; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059322

ring current dynamics; self-consistent treatment of fields and plasma; Substorm Injections; Van Allen Probes

2013

\textquotedblleftNonempty\textquotedblright Gap Between Radiation Belts: The First Observations

The first space experiments carried out in 1958 by the scientific groups of James Van Allen (United States) on board the first Explorer satellites and Sergey Vernov (Soviet Union) on board the satellite Sputnik 3 led to the discovery of the Earth\textquoterights radiation belts\textemdashthe particles (mainly protons and electrons) captured by the magnetic field of the Earth. Two scientific groups independently came to the conclusion that the electrons in the geomagnetic trapping region fill two areas, inner and outer radiation belts, unlike the protons, which fill the whole trapping region [see, e.g., Lemaire, 2000].

Panasyuk, Mikhail;

Published by: Eos, Transactions American Geophysical Union      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013EO510006

Earth\textquoterights radiation belts; history of discovery; particle dynamics



  1      2      3