Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





The global statistical response of the outer radiation belt during geomagnetic storms



AuthorMurphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;
KeywordsGeomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes
AbstractUsing the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.
Year of Publication2018
JournalGeophysical Research Letters
Volume
Number of Pages
Section
Date Published04/2018
ISBN
URLhttps://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076674
DOI10.1002/2017GL076674