• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the REPT and MagEIS instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~ 4.0. In three other cases identifiable smaller and more short-lived dropouts appeared, and in five other cases these waves evidently had little or no effect.

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes


The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth\textquoterights Radiation Belt High-Energy Particle Populations

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to \~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10-2\textendash106 particles/cm2 s sr MeV) and energy spectra (ΔE/E\~25 \%) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

Baker, D.; Kanekal, S.; Hoxie, V.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Bolton, B.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Stevens, K.; Wallace, J.; Yehle, A.; Spence, H.; Friedel, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9950-9

RBSP; Van Allen Probes