Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2021

Determining the Temporal and Spatial Coherence of Plasmaspheric Hiss Waves in the Magnetosphere

Abstract Plasmaspheric hiss is one of the most important plasma waves in the Earth s magnetosphere to contribute to radiation belt dynamics by pitch-angle scattering energetic electrons via wave-particle interactions. There is growing evidence that the temporal and spatial variability of wave-particle interactions are important factors in the construction of diffusion-based models of the radiation belts. Hiss amplitudes are thought to be coherent across large distances and on long timescales inside the plasmapause, which means that hiss can act on radiation belt electrons throughout their drift trajectories for many hours. In this study, we investigate both the spatial and temporal coherence of plasmaspheric hiss between the two Van Allen Probes from November 2012 to July 2019. We find ∼3,264 events where we can determine the correlation of wave amplitudes as a function of both spatial distance and time lag in order to study the spatial and temporal coherence of plasmaspheric hiss. The statistical results show that both the spatial and temporal correlation of plasmaspheric hiss decrease with increasing L-shell, and become incoherent at L > ∼4.5. Inside of L = ∼4.5, we find that hiss is coherent to within a spatial extent of up to ∼1,500 km and a time lag up to ∼10 min. We find that the spatial and temporal coherence of plasmaspheric hiss does not depend strongly on the geomagnetic index (AL*) or magnetic local time. We discuss the ramifications of our results with relevance to understanding the global characteristics of plasmaspheric hiss waves and their role in radiation belt dynamics.

Zhang, Shuai; Rae, Jonathan; Watt, Clare; Degeling, Alexander; Tian, Anmin; Shi, Quanqi; Shen, Xiao-Chen; Smith, Andy; Wang, Mengmeng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028635

Van Allen Probes

2018

Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations

Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial enhancement of the differential flux between \~20\textdegree - 40\textdegree pitch angle for ion energies between \~90 - 220keV, and an absence of flux modulations at 90\textdegree. The numerical results confirm predictions of drift-bounce resonance theory and show good quantitative agreement with observations of modulations in differential flux produced by ULF waves.

Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2017JA025123

ULF wave; drift-resonant; test particle simulation; Van Allen Probes

2014

Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a \textquotedbllefttest-kinetic model\textquotedblright) with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90\textdegree from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energies between 500 keV and 1.5 MeV near geosynchronous orbit. We also demonstrate that electrons in this energy range satisfy the drift resonance condition for the ULF waves produced by the MHD model. This confirms the conclusions reached by Tan et al. (2011), that the energization process in this case is dominated by drift-resonant interactions between electrons and MHD fast mode waves, produced by fluctuations in solar wind dynamic pressure.

Degeling, A.; Rankin, R.; Zong, Q.-G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2013JA019672

adiabatic electron transport; magnetopause buffeting; Radiation belts; ULF waves

Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts

We present simulations of the outer electron radiation belt using a new ULF wave-driven radial diffusion model, including empirical representations of loss due to chorus and plasmaspheric hiss. With an outer boundary condition constrained by in situ electron flux observations, we focus on the impacts of magnetopause shadowing and outward radial diffusion in the heart of the radiation belt. Third invariant conserving solutions are combined to simulate the L shell and time dependence of the differential flux at a fixed energy. Results for the geomagnetically quiet year of 2008 demonstrate not only remarkable cross L shell impacts from magnetopause shadowing but also excellent agreement with the in situ observations even though no internal acceleration source is included in the model. Our model demonstrates powerful utility for capturing the cross-L impacts of magnetopause shadowing with significant prospects for improved space weather forecasting. The potential role of the plasmasphere in creating a third belt is also discussed.

Ozeke, Louis; Mann, Ian; Turner, Drew; Murphy, Kyle; Degeling, Alex; Rae, Jonathan; Milling, David;

Published by: Geophysical Research Letters      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014GL060787

magnetopause shadowing; Radiation belt; ULF wave radial diffusion

2013

Discovery of the action of a geophysical synchrotron in the Earth\textquoterights Van Allen radiation belts

Although the Earth\textquoterights Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents a significant shift in known Van Allen radiation belt dynamics and structure. These periodic collisionless betatron acceleration processes also have applications in understanding the dynamics of, and periodic electromagnetic emissions from, distant plasma-astrophysical systems.

Mann, Ian; Lee, E.; Claudepierre, S.; Fennell, J.; Degeling, A.; Rae, I.; Baker, D.; Reeves, G.; Spence, H.; Ozeke, L.; Rankin, R.; Milling, D.; Kale, A.; Friedel, R.; Honary, F.;

Published by: Nature Communications      Published on: 11/2013

YEAR: 2013     DOI: 10.1038/ncomms3795

Van Allen Probes

2008

Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm

[1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of ULF wave power close to noon Magnetic Local Time (MLT) at the magnetopause. The expected electron dynamics are investigated using model wavefields to predict the observable characteristics of the interaction in satellite electron flux data. The wave and kinetic models show that the localized radial motion of magnetic field lines associated with MHD fast waves propagating from the ULF source region acts to periodically inject electrons from high L to lower L within the magnetosphere. This action becomes resonant when the drift period of the electrons matches a multiple of the ULF wave period and leads to an enhancement in radial transport.

Degeling, A.; Rankin, R.;

Published by: Journal of Geophysical Research      Published on: 10/2008

YEAR: 2008     DOI: 10.1029/2008JA013254

Radial Transport

2007

The effect of ULF compressional modes and field line resonances on relativistic electron dynamics

The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602\textendash8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed initial condition is calculated by assuming f remains constant along electron trajectories. The azimuthal variation in ULF wave structure is shown to have a profound effect on the electron dynamics once a threshold in azimuthal variation is exceeded. Electron energy changes occur that are significantly larger than the trapping width corresponding to the maximum wave amplitude. We show how this can be explained in terms of the overlap of multiple resonance islands, produced by the introduction of azimuthal amplitude variation. This anomalous energisation is characterised by performing parameter scans in the modulation amplitude ε and the wave electric field. A simple parametric model for the threshold is shown to give reasonable agreement with the threshold observed in the electron dynamics model. Above the threshold, the radial transport averaged over φ is shown to become diffusive in nature over a timescale of about 25 wave periods. The anomalous energisation described in this paper occurs over the first 15 wave periods, indicating the importance of convective transport in this process.

Degeling, A.; Rankin, R.; Kabin, K.; Marchand, R.; Mann, I.R.;

Published by: Planetary and Space Science      Published on: 04/2007

YEAR: 2007     DOI: 10.1016/j.pss.2006.04.039

Radial Transport



  1