Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2021

Solar Energetic Proton Access to the Inner Magnetosphere during the 7-8 September 2017 event

Abstract The access of solar energetic protons into the inner magnetosphere on 7-8 September 2017 is investigated by following reversed proton trajectories to compute the proton cutoff energy using the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The cutoff energies for protons coming from the west and east direction, the minimum and maximum cutoff energy respectively, are calculated every five minutes along the orbit of Van Allen Probes using TS07 and the Lyon-Fedder-Mobarry (LFM) MHD magnetic field model. The result shows that the cutoff energy increases significantly as the radial distance decreases, and that the cutoff energy decreases with the building up of the ring current during magnetic storms. Solar wind dynamic pressure also affects cutoff suppression [Kress et al., 2004]. The LFM-RCM model shows stronger suppression of cutoff energy than TS07 during strong solar wind driving conditions. The simulation result is compared with proton flux measurements, showing consistent variation of the cutoff location during the 7-8 September 2017 geomagnetic storm. This article is protected by copyright. All rights reserved.

Li, Zhao; Engel, Miles; Hudson, Mary; Kress, Brian; Patel, Maulik; Qin, Murong; Selesnick, Richard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029107

Van Allen Probes

2020

Global Simulation of Electron Cyclotron Harmonic Wave Instability in a Storm-Time Magnetosphere

Abstract Electron cyclotron harmonic (ECH) waves are electrostatic emissions between the ECHs and play a dominant role for precipitating energetic electrons in the magnetotail. Statistically, the ECH wave intensity is stronger at nightside and dawnside than at dayside and duskside. In this study, we, for the first time, simulate the global ECH wave evolution during a geomagnetic storm event using Ring current Atmosphere interactions Model with Self-Consistent Magnetic field (RAM-SCB) combined with a linear growth rate solver. We find that the simulation results are generally consistent with the statistical and real-time observations. The ECH wave instability is much stronger at nightside and dawnside, compared to the instability at dayside and duskside. Before a geomagnetic storm (quiet time), the unstable regions of the ECH waves lie beyond with a weak instability level. During the main phase of a geomagnetic storm, the unstable regions can extend to a lower altitude ( ) with a strong instability level. During the recovery phase, the unstable regions return to . We also find that the inner boundary of unstable ECH wave regions is coincident with the plasmapause location during the whole geomagnetic storm event.

Liu, Xu; Chen, Lunjin; Engel, Miles; Jordanova, Vania;

Published by: Geophysical Research Letters      Published on: 02/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019GL086368

ECH wave global instability; RAM-SCB model; Geomagnetic storm; Van Allen Probes

2019

Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017

In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse-height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consistent with low altitude vertical cutoffs. Both the observations and numerical results show that proton access into the inner magnetosphere depends strongly on angle between particle arrival direction and magnetic west. The numerical result is approximately consistent with the observation that the energy of almost all solar protons stays above the minimum cutoff rigidity.

Qin, Murong; Hudson, Mary; Kress, Brian; Selesnick, Richard; Engel, Miles; Li, Zhao; Shen, Xiaochen;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026380

cutoff energy; cutoff location; Dartmouth geomagnetic cutoff code; Pulse height analyzed data; Solar proton; straggling function; Van Allen Probes

Initial Results From the GEM Challenge on the Spacecraft Surface Charging Environment

Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group \textquotedblleftInner Magnetosphere Cross-energy/Population Interactions\textquotedblright initiated a community-wide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface charging environment for the Van Allen Probes orbits during the 17 March 2013 storm event. The integrated electron flux between 10 and 50 keV is used as the metrics. Various skill scores are applied to quantitatively measure the modeling performance against observations. Results indicate that no model consistently perform the best in all of the skill scores or for both satellites. We find that from these simulations the ring current model with observational flux boundary condition and Weimer electric potential driver generally reproduces the most realistic flux level around the spacecraft. A simple and weaker Volland-Stern electric field is not capable of effectively transporting the same plasma at the boundary toward the Earth. On the other hand, if the ring current model solves the electric field self-consistently and obtains similar strength and pattern in the equatorial plane as the Weimer model, the boundary condition plays another crucial role in determining the electron flux level in the inner region. When the boundary flux spectra based on magnetohydrodynamics (MHD) model/empirical model deviate from the shape or magnitude of the observed distribution function, the simulation produces poor skill scores along Van Allen Probes orbits.

Yu, Yiqun; ätter, Lutz; Jordanova, Vania; Zheng, Yihua; Engel, Miles; Fok, Mei-Ching; Kuznetsova, Maria;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW002031

GEM challenge; IMCEPI Focus Group; ring current model assessment; Space weather; spacecraft surface charging; Van Allen Probes

Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere

This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn-dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti-correlate with solar wind electric field, magnetospheric electric field, and Kp, but not with EUV irradiance, indicating that convective erosion is the dominant physical process controlling the plasmapause at these timescales.

Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026365

convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes

2016

Comparison of Van Allen Probes radiation belt proton data with test particle simulation for the 17 March 2015 storm

The loss of protons in the outer part of the inner radiation belt (L = 2 to 3) during the 17 March 2015 geomagnetic storm was investigated using test particle simulations that follow full Lorentz trajectories with both magnetic and electric fields calculated from an empirical model. The simulation results presented here are compared with proton pitch angle measurements from the Van Allen Probe satellites Relativistic Electron Proton Telescope (REPT) instrument before and after the coronal mass ejection-shock-driven storm of 17\textendash18 March 2015, with minimum Dst =- 223 nT, the strongest storm of Solar Cycle 24, for four different energy ranges with 30, 38, 50, and 66 MeV mean energies. Two simulations have been run, one with an inductive electric field and one without. All four energy channels show good agreement with the Van Allen Probes REPT measurements for low L (L < 2.4) in both simulations but diverge for higher L values. The inclusion of the inductive electric field, calculated from the time-changing magnetic field, significantly improves the agreement between simulation and REPT measurements at L > 2.4. A previous study using the Highly Elliptical Orbiter 3 spacecraft also showed improved agreement when including the inductive electric field but was unable to compare effects on the pitch angle distributions.

Engel, M.; Kress, B.; Hudson, M.; Selesnick, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016JA023333

field line curvature scattering; inductive electric field; proton loss; Radiation belt; Van Allen Probes



  1