Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2015

The global context of the 14 November, 2012 storm event

From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause ~20\textendash30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in-situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in-situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet.

Hwang, K.-J.; Sibeck, D.; Fok, M.-C.; Zheng, Y.; Nishimura, Y.; Lee, J.-J.; Glocer, A.; Partamies, N.; Singer, H.; Reeves, G.; Mitchell, D.; Kletzing, C.; Onsager, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020826

Van Allen Probes

2014

Meeting Report: Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014, Boulder, Colorado

Following the conclusion of the 2014 Space Weather Week in Boulder, Colorado, the NOAA National Geophysical Data Center and Space Weather Prediction Center cohosted a 1 day workshop on the intercalibration of solar energetic particle (SEP) measurements. The overall purpose of this workshop was to discuss the intercalibration of SEP measurements from different instruments and different spacecraft, to foster new cooperative intercalibration efforts, and to identify a path forward for establishing a set of intercalibration guidelines. The detailed objectives of this workshop were described by Rodriguez and Onsager [2014]. Ten talks were given at the workshop (available at ftp://ftp.ngdc.noaa.gov/STP/publications/spe_intercal/), interspersed with extensive discussions. One outcome of these discussions is a recommendation that a set of guidelines be drafted for the on-orbit cross comparison of solar energetic particle measurements, similar to the first optical calibration guidelines developed for the Global Space-based Inter-Calibration System (GSICS) of the World Meteorological Organization (WMO) and the Coordination Group for Meteorological Satellites [Datla et al., 2009].

Rodriguez, Juan; Onsager, Terrance; Heynderickx, Daniel; Jiggens, Piers;

Published by: Space Weather      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/swe.v12.1110.1002/2014SW001134

cross calibration; interoperability; Solar Energetic Particles

2013

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes



  1