• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 9 entries in the Bibliography.

Showing entries from 1 through 9


On the Formation of Phantom Electron Phase Space Density Peaks in Single Spacecraft Radiation Belt Data

Abstract This paper examines the rapid losses and acceleration of trapped relativistic and ultrarelativistic electron populations in the Van Allen radiation belt during the September 7-9, 2017, geomagnetic storm. By analyzing the dynamics of the last closed drift shell (LCDS) and the electron flux and phase space density (PSD), we show that the electron dropouts are consistent with magnetopause shadowing and outward radial diffusion to the compressed LCDS. During the recovery phase an in-bound pass of Van Allen Probe A shows an apparent local peak in PSD, but which does not exist. A careful analysis of the multipoint measurements by the Van Allen Probes reveals instead how the apparent PSD peak arises from aliasing monotonic PSD profiles which are rapidly increasing due to acceleration from very fast inwards radial diffusion. In the absence of such multi-satellite conjunctions during fast acceleration events, such peaks might otherwise be associated with local acceleration processes.

Olifer, L.; Mann, I.; Ozeke, L.; Morley, S.; Louis, H.;

Published by: Geophysical Research Letters      Published on: 05/2021

YEAR: 2021     DOI:

Van Allen Probes; magnetopause shadowing; ULF wave radial diffusion; electron phase space density

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant electron loss timescales through 1-D Fokker-Planck simulations. We find that slot region electron loss timescales vary significantly from <1 day to several years, showing a strong dependence on electron energy, L-shell and substorm activity. We also construct an empirical model of slot region electron loss timescales due to scattering by plasmaspheric hiss, which agrees well with the 1-D simulation results and can be readily used in modeling the dynamics of slot region electrons. This article is protected by copyright. All rights reserved.

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI:

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes


Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently scatter ~10- to 100-keV electrons at rates up to ~10-4 s-1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons and to >100 days for >5-MeV electrons. These newly obtained statistical properties of plume hiss and associated electron scattering effects are useful to future modeling efforts of radiation belt electron dynamics.

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions


Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS waves are most intense, the electron butterfly distribution is inhibited by exohiss and chorus, and electrons are considerably accelerated by combined scattering of MS and chorus waves. The simulated electron pitch angle distributions exhibit the variation trend consistent with the observations. Our results strongly suggest that competition and cooperation between resonant interactions with concurrently occurring magnetospheric waves need to be carefully treated in modeling and comprehending the radiation belt electron dynamics.

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter ~10\textendash100 keV electrons at rates up to ~10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes

Operational Nowcasting of Electron Flux Levels in the Outer Zone of Earth\textquoterights Radiation Belt

We describe a lightweight, accurate nowcasting model for electron flux levels measured by the Van Allen probes. Largely motivated by Rigler et al. [2004], we turn to a time-varying linear filter of previous flux levels and Kp. We train and test this model on data gathered from the 2.10 MeV channel of the Relativistic Electron-Proton Telescope (REPT) sensor onboard the Van Allen probes. Dynamic linear models are a specific case of state space models, and can be made flexible enough to emulate the nonlinear behavior of particle fluxes within the radiation belts. Real-time estimation of the parameters of the model is done using a Kalman Filter, where the state of the model is exactly the parameters. Nowcast performance is assessed against several baseline interpolation schemes. Our model demonstrates significant improvements in performance over persistence nowcasting. In particular, during times of high geomagnetic activity, our model is able to attain performance substantially better than a persistence model. In addition, residual analysis is conducted in order to assess model fit, and to suggest future improvements to the model.

Coleman, Tim; McCollough, James; Young, Shawn; Rigler, E.;

Published by: Space Weather      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017SW001788

forecasting; Kalman Filter; Van Allen Probes


Intelligent Sampling of Hazardous Particle Populations in Resource-Constrained Environments

Sampling of anomaly-causing space environment drivers is necessary for both real-time operations and satellite design efforts, and optimizing measurement sampling helps minimize resource demands. Relating these measurements to spacecraft anomalies requires the ability to resolve spatial and temporal variability in the energetic charged particle hazard of interest. Here we describe a method for sampling particle fluxes informed by magnetospheric phenomenology so that, along a given trajectory, the variations from both temporal dynamics and spatial structure are adequately captured while minimizing oversampling. We describe the coordinates, sampling method, and specific regions and parameters employed. We compare resulting sampling cadences with data from spacecraft spanning the regions of interest during a geomagnetically active period, showing that the algorithm retains the gross features necessary to characterize environmental impacts on space systems in diverse orbital regimes while greatly reducing the amount of sampling required. This enables sufficient environmental specification within a resource-constrained context, such as limited telemetry bandwidth, processing requirements, and timeliness.

McCollough, J.; Quinn, J.; Starks, M.; Johnston, W.;

Published by: Space Weather      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017SW001629

data sampling; magnetospheric plasma; measurement; Solar Energetic Protons; trapped electrons; trapped protons; Van Allen Probes

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 fcp and fLHR. The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood.

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like