Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2021

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E telescope technology, and a deep dielectric charging monitor (DDCM). The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30° field of view (FOV). The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30° cone-angle FOV. The ground test and calibration results indicate that these three sensors exhibit excellent performance. Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer (MagEIS) of the Van Allen Probes spacecraft, with an average relative deviation of 27.3\% for the energy spectra. The charging currents and voltages measured by the DDCM during storms are consistent with the high-energy electron observations of the HED, demonstrating the effectiveness of the DDCM. The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

Published by: Earth and Planetary Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E telescope technology, and a deep dielectric charging monitor (DDCM). The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30° field of view (FOV). The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30° cone-angle FOV. The ground test and calibration results indicate that these three sensors exhibit excellent performance. Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer (MagEIS) of the Van Allen Probes spacecraft, with an average relative deviation of 27.3\% for the energy spectra. The charging currents and voltages measured by the DDCM during storms are consistent with the high-energy electron observations of the HED, demonstrating the effectiveness of the DDCM. The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

Published by: Earth and Planetary Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

2020

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity, including substorm dependence and the MLT asymmetry. Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace.

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

Published by: Earth and Planetary Physics      Published on: 06/2020

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

2019

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

2013

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

Storm-induced energization of radiation belt electrons: Effect of wave obliquity

New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L\~5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron acceleration occurs in a regime of loss-limited energization. In this regime, the average wave obliquity plays a critical role in mitigating lifetime reduction as wave intensity increases with geomagnetic activity, suggesting that much larger energization levels should be reached during the early recovery phase of storms than during quiet time or moderate disturbances, the latter corresponding to stronger losses. These new effects should be included in realistic radiation belt simulations.

Artemyev, A.; Agapitov, O.; Mourenas, D.; Krasnoselskikh, V.; Zelenyi, L.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50837

magnetic storm; Radiation belts; wave-particle interactions



  1