• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes


Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere

Ultralow frequency (ULF) waves generated in the ion foreshock are a well-known source of Pc3-Pc4 waves (7\textendash100 mHz) observed in the dayside magnetosphere. We use data acquired on 10 April 2013 by multiple spacecraft to demonstrate that ULF waves of upstream origin can propagate to the midnight sector of the inner magnetosphere. At 1130\textendash1730 UT on the selected day, the two Van Allen Probes spacecraft and the geostationary ETS-VIII satellite detected compressional 20 to 40 mHz magnetic field oscillations between L \~ 4 and L \~ 7 in the midnight sector, along with other spacecraft located closer to noon. Upstream origin of the oscillations is concluded from the wave frequency that matches a theoretical model, globally coherent amplitude modulation, and duskward propagation that is consistent with expected entry of the upstream wave energy through the dawnside flank under the observed interplanetary magnetic field. The oscillations are attributed to magnetohydrodynamic fast-mode waves based on their propagation velocity of \~300 km/s and the relationship between the electric and magnetic field perturbations. The magnitude of the azimuthal wave number is estimated to be \~30. There is no evidence that the oscillations propagated to the ground in the midnight sector.

Takahashi, Kazue; Hartinger, Michael; Malaspina, David; Smith, Charles; Koga, Kiyokazu; Singer, Howard; ühauff, Dennis; Baishev, Dmitry; Moiseev, Alexey; Yoshikawa, Akimasa;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022958

midnight sector; Pc3 waves; plasmasphere; upstream waves; Van Allen Probes


Formation process of relativistic electron flux through interaction with chorus emissions in the Earth\textquoterights inner magnetosphere

We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green\textquoterights function for one cycle of chorus wave-particle interaction. We obtain the Green\textquoterights functions for the energy range 10 keV\textendash6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green\textquoterights functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultrarelativistic acceleration through nonlinear trapping by chorus emissions. Further, these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the onset of the continuous injection of 10\textendash30 keV electrons.

Omura, Yoshiharu; Miyashita, Yu; Yoshikawa, Masato; Summers, Danny; Hikishima, Mitsuru; Ebihara, Yusuke; Kubota, Yuko;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021563

Chorus; nonlinear wave-particle interaction; Particle acceleration; Radiation belts; relativistic electrons; simulation