• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 6 entries in the Bibliography.

Showing entries from 1 through 6


A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers

We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to IMF discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, KH-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment.

Wang, Chih-Ping; Thorne, Richard; Liu, Terry; Hartinger, Michael; Nagai, Tsugunobu; Angelopoulos, Vassilis; Wygant, John; Breneman, Aaron; Kletzing, Craig; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023610

IMF discontinuity; inner magnetosphere; Kelvin-Helmholtz vortices; magnetosheath; Pc5 waves; plasma sheet; Van Allen Probes


The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mechanisms for large gyroradii oxygen ions and much smaller gyroradii hydrogen and helium ions. The oxygen ions are entrained on the magnetosphere boundary, while the hydrogen and helium ions appear to escape along reconnected field lines. These results have important implications for not only Earth\textquoterights magnetosphere but also other solar system magnetospheres.

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes


THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks

Turbulence is complex behavior that is ubiquitous in nature, but its mechanism is still not sufficiently clear. Therefore, the main aim of this paper is analysis of intermittent turbulence in magnetospheric and solar wind plasmas using a statistical approach based on experimental data acquired from space missions. The quintet spacecraft of Time History of Events and Macroscale Interactions during Substorms (THEMIS) allows us to investigate the details of turbulent plasma parameters behind the collisionless shocks. We investigate both the solar wind and magnetospheric data by using statistical probability distribution functions of Elsässer variables that can reveal the intermittent character of turbulence in space plasma. Our results suggest that turbulence behind the quasi-perpendicular shock is more intermittent with larger kurtosis than that behind the quasi-parallel shocks, which are immersed in a relatively quiet solar wind plasma, as confirmed by Wind measurements. It seems that behind the quasi-perpendicular shock the waves propagating outward from the Sun are larger than possibly damped waves propagating inward. In particular, we hope that this difference in characteristic behavior of the fluctuating space plasma parameters behind both types of shocks can help identify complex plasma structures in the future space missions. We also expect that the results obtained in this paper will be important for general models of turbulence.

Macek, W.; Wawrzaszek, A.; Sibeck, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021656

intermittency; magnetosheath; shocks; Solar wind; Space plasma; turbulence

Extreme geomagnetic disturbances due to shocks within CMEs

We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\textquoterights magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing.

Lugaz, N.; Farrugia, C.; Huang, C.-L.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015GL064530

coronal mass ejections; Geomagnetic storm; magnetopause; magnetosheath; shocks

What frequencies of standing surface waves can the subsolar magnetopause support?

It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle\textquoterights worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous estimates and indirect observational evidence for such standing surface waves of the subsolar magnetopause. However, the distributions exhibit significant spread (of order \textpm0.3 mHz) demonstrating that KS mode frequencies, especially higher harmonics, should vary considerably depending on the solar wind conditions. The implications of such large spread on observational statistics are discussed. The subsolar magnetopause eigenfrequencies are found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the possible occurrence of KS modes is shown to be controlled by the dipole tilt angle.

Archer, M.; Plaschke, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020545

magnetopause; magnetosheath; Magnetosphere; Ulf; waves


Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS

Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon\textquoterights Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from the magnetosphere near the current sheet without further energization and that the enhancements are a result of bursty lateral magnetosphere intrusion into the magnetosheath, the enhancements and changes in the magnetosheath properties becoming smaller with increasing outward distance from the intrusion. From limited events having specific separation distances and alignments between the probes, we estimated that a single isolated enhancement can have a thin and elongated structure as narrow as 2 RE wide in the X direction, as long as over 7 RE in the Y direction, and as thin as 1 RE in the Z direction. We propose that Kelvin\textendashHelmholtz perturbations at the magnetopause and subsequent magnetosphere-magnetosheath particle mixing due to reconnection or diffusion can plausibly play an important role in generating the bursty magnetosphere intrusion into the magnetosheath and the hot electron enhancements.

Wang, Chih-Ping; Xing, Xiaoyan; Nakamura, T.; Lyons, Larry; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020603

ARTEMIS; hot electrons; magnetosheath