Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 12 entries in the Bibliography.


Showing entries from 1 through 12


2021

Rapid injections of MeV electrons and extremely fast step-like outer radiation belt enhancements

Abstract Rapid injection of MeV electrons associated with strong substorm dipolarization has been suggested as a potential explanation for some radiation belt enhancement events. However, it has been difficult to quantify the contribution of MeV electron injections to radiation belt enhancements. This paper presents two isolated MeV electron injection events for which we quite precisely quantify how the entire outer-belt immediately changed with the injections. Tracking detailed outer-belt evolution observed by Van Allen Probes, for both events, we identify large step-like relativistic electron enhancements (roughly 1-order of magnitude increase for ∼2 MeV electron fluxes) for L ≳ 3.8 and L ≳ 4.6, respectively, that occurred on ∼30-min timescales nearly instantaneously with the injections. The enhancements occurred almost simultaneously for 10s keV to multi-MeV electrons, with the lowest-L of enhancement region located farther out for higher energy. The outer-belt stayed at these new levels for ≳ several hours without substantial subsequent enhancements.

Kim, H.-J.; Lee, D.-Y.; Wolf, R.; Bortnik, J.; Kim, K.-C.; Lyons, L.; Choe, W.; Noh, S.-J.; Choi, K.-E.; Yue, C.; Li, J.;

Published by: Geophysical Research Letters      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL093151

Radiation belt enhancement; Relatvistic electrons; substorm injection; Step-like; Extremely fast; Van Allen Probes

The characteristics of EMIC waves in the magnetosphere based on the Van Allen Probes and Arase observations

Abstract We performed a comprehensive statistical study of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes and Exploration of energization and Radiation in Geospace satellite (ERG/Arase). From 2017 to 2018, we identified and categorized EMIC wave events with respect to wavebands (H+ and He+ EMIC waves) and relative locations from the plasmasphere (inside and outside the plasmasphere). We found that H+ EMIC waves in the morning sector at L>8 are predominantly observed with a mixture of linear and right-handed polarity and higher wave normal angles during quiet geomagnetic conditions. Both H+ and He+ EMIC waves observed in the noon sector at L∼4-6 have left-handed polarity and lower wave normal angles at |MLAT|< 20˚ during the recovery phase of a storm with moderate solar wind pressure. In the afternoon sector (12-18 MLT), He+ EMIC waves are dominantly observed with strongly enhanced wave power at L∼6-8 during the storm main phase, while in the dusk sector (17-21 MLT) they have lower wave normal angles with linear polarity at L>8 during geomagnetic quiet conditions. Based on distinct characteristics at different EMIC wave occurrence regions, we suggest that EMIC waves in the magnetosphere can be generated by different free energy sources. Possible sources include the freshly injected particles from the plasma sheet, adiabatic heating by dayside magnetospheric compressions, suprathermal proton heating by magnetosonic waves, and off-equatorial sources. This article is protected by copyright. All rights reserved.

Jun, C.-W; Miyoshi, Y.; Kurita, S.; Yue, C.; Bortnik, J.; Lyons, L.; Nakamura, S.; Shoji, M.; Imajo, S.; Kletzing, C.; Kasahara, Y.; Kasaba, Y.; Matsuda, S.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029001

Spatial distributions of EMIC waves; RBSP and Arase observations; EMIC wave properties; EMIC wave dependence on geomagnetic condition; Van Allen Probes

2020

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events occurred between 1 October 2012 and 31 December 2017 and were identified using Geostationary Operational Environmental Satellite (GOES) 15 >2 MeV fluxes at GEO, which we have used to characterize the radial response of the radiation belt, by comparing to fluxes measured by the Van Allen probes Energetic Particle, Composition and Thermal Plasma Suite Relativistic Electron-Proton Telescope (ECT-REPT) between 2.55.0 and generally similar for L>4.5. Post-enhancement maximum fluxes show a remarkable correlation for all L>4.0 although the magnitude of the pre-existing fluxes on the outer belt plays a significant role and makes the ratio of pre-enhancement to post-enhancement fluxes less predictable in the region 4.0

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

2019

Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss

Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in-between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9

Pinto, V.; Mourenas, D.; Bortnik, J.; Zhang, X.-J.; Artemyev, A.; Moya, P.; Lyons, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: Dec-07-2019

YEAR: 2019     DOI: 10.1029/2019JA026509

Decay rates; EMIC waves; MeV Electron Decay; Plasmaspheric Hiss; Radiation belts; Remnant Belt; Van Allen Probes

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES-13 and GOES-15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves predominantly occur outside the plasmasphere. Meanwhile, the time duration and peak occurrence rate of EMIC waves associated with injections are shorter and limited to a narrower magnetic local time region than those without injections, indicating that these waves have localized source regions. He+ EMIC waves inside the plasmasphere associated with injection are usually accompanied by an increase in H+ flux within energies of 1\textendash50 keV through all magnetic local time regions, while most wave events outside the plasmasphere show less relationship with H+ flux increase. From these observations, we suggest that injected hot ions are the major driver of He+ EMIC waves inside the plasmasphere during active time. Expanding plasmasphere during quiet times can provide broad wave source regions for He+ EMIC waves on the dayside. However, H+ EMIC waves outside the plasmasphere show different characteristics, suggesting that these waves are generated by other processes.

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

2018

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

2015

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

2014

Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS

Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon\textquoterights Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from the magnetosphere near the current sheet without further energization and that the enhancements are a result of bursty lateral magnetosphere intrusion into the magnetosheath, the enhancements and changes in the magnetosheath properties becoming smaller with increasing outward distance from the intrusion. From limited events having specific separation distances and alignments between the probes, we estimated that a single isolated enhancement can have a thin and elongated structure as narrow as 2 RE wide in the X direction, as long as over 7 RE in the Y direction, and as thin as 1 RE in the Z direction. We propose that Kelvin\textendashHelmholtz perturbations at the magnetopause and subsequent magnetosphere-magnetosheath particle mixing due to reconnection or diffusion can plausibly play an important role in generating the bursty magnetosphere intrusion into the magnetosheath and the hot electron enhancements.

Wang, Chih-Ping; Xing, Xiaoyan; Nakamura, T.; Lyons, Larry; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020603

ARTEMIS; hot electrons; magnetosheath

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward boundary intensification that was followed by an auroral streamer reaching the equatorward boundary of the auroral oval. Three THEMIS satellites in the magnetotail detected flow bursts and one of the THEMIS satellites in the outer plasmasphere observed a ring current injection together with electromagnetic ion cyclotron wave intensifications. Proton auroral brightenings occurred multiple times throughout the storm main phase and a majority of those were correlated with auroral streamers reaching the auroral equatorward boundary. This sequence highlights the important role of transient flow bursts and particle injections for plasma transport into the inner magnetosphere and thus reflects a tail-inner magnetospheric interaction process in which transient flow bursts play an important role in injecting ring current ions into the plasmasphere, causing rapid modulation of precipitation and the resultant subauroral proton aurora.

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

2007

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enhancement in 200\textendash700 keV electrons in the outer slot region near L = 3.3. Radial diffusion is much less effective but may partially contribute to the flux enhancement at lower L. Subsequent outward expansion of the plasmapause during the storm recovery phase effectively terminates local wave acceleration in the slot and prevents acceleration to energies higher than \~700 keV. A statistical analysis of energetic electron flux enhancements and wave and plasma properties over the entire CRRES mission supports the concept of local wave acceleration as a dominant process for refilling the slot during the main and early recovery phase of storms. For moderate storms, the injection process naturally becomes less effective at energies >=1 MeV, due to the longer wave acceleration times and additional precipitation loss from scattering by electromagnetic ion cyclotron waves. However, during extreme events when the plasmapause remains compressed for several days, conditions may occur to allow wave acceleration to multi-MeV energies at locations normally associated with the slot.

Thorne, R.; Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

Published by: Journal of Geophysical Research      Published on: 06/2007

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1973

Equilibrium Structure of Radiation Belt Electrons

The detailed quiet time structure of energetic electrons in the earth\textquoterights radiation belts is explained on the basis of a balance between pitch angle scattering loss and inward radial diffusion from an average outer zone source. Losses are attributed to a combination of classical Coulomb scattering at low L and whistler mode turbulent pitch angle diffusion throughout the outer plasmasphere. Radial diffusion is driven by substorm associated fluctuations of the magnetospheric convection electric field.

Lyons, Lawrence; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 05/1973

YEAR: 1973     DOI: 10.1029/JA078i013p02142

Local Loss due to VLF/ELF/EMIC Waves

1972

Parasitic Pitch Angle Diffusion of Radiation Belt Particles by Ion Cyclotron Waves

The resonant pitch angle scattering of protons and electrons by ion cyclotron turbulence is investigated. The analysis is analogous to that recently performed for electron interactions with whistler mode waves. The role played by the intense band of ion cyclotron waves, predicted to be generated just within the plasmapause during the decay of the magnetospheric ring current, is evaluated in detail. Loss rates resulting from parasitic interactions with this turbulence are determined for energetic protons and relativistic electrons.

Lyons, Lawrence; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 10/1972

YEAR: 1972     DOI: 10.1029/JA077i028p05608

Local Loss due to VLF/ELF/EMIC Waves



  1