• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 hours. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI:

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes


Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions