• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 4 entries in the Bibliography.

Showing entries from 1 through 4


Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI:

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes


Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A

We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04\textendash06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04\textendash06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisphere. Using cross-correlation analysis, we did, for the first time, time delay analysis of a conjugate ELF/VLF event between ground and space, finding +2 to +4 s (ATH first) for the QP and -3 s (RBSP A first) for the pulse. Using backward tracing from ATH to the geomagnetic equator and forward tracing from the equator to RBSP A, based on plasmaspheric density observed by the spacecraft, we validate a possible propagation path for the QP emission which is consistent with the observed time delay.

Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; ik, Ondrej; Kurth, William;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2015JA022264

conjugate event; propagation; QP; Ray Tracing; time delay; Van Allen Probes; VLF/ELF


Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions