Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 73 entries in the Bibliography.


Showing entries from 51 through 73


2017

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency, relativistic effects should be considered in the formula for whistler mode wave growth rate. Here we report high-resolution observations during the 14 October 2014 small storm and firstly demonstrate, using a fully relativistic simulation, that electrons with the high-energy tail population and relativistic pitch angle anisotropy can provide free energy sufficient for generating chorus below 0.1 fce. The simulated wave growth displays a very similar pattern to the observations. The current results can be applied to Jupiter, Saturn, and other magnetized planets.

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang;

Published by: Advances in Space Research      Published on: 03/2017

YEAR: 2017     DOI: 10.1016/j.asr.2016.12.035

Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches \~ 35\textendash95 pT in the case of distinct butterfly distributions with BI > 1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80\%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

2016

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4\textendash6 April and 18\textendash20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR\textquoterights spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <\~ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.

Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth; Chan, Anthony; Soto-Chavez, A.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070280

chorus modulation; inner magnetosphere; ULF wave; Van Allen Probes; whistler wave

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, demonstrate that the combined resonant scattering by the simultaneous three-band EMIC waves is overall dominated by He+ band wave diffusion, mainly due to its dominance over the wave power (the mean wave amplitudes are approximately 0.4 nT, 1.6 nT, and 0.15 nT for H+, He+, and O+ bands, respectively). Near the loss cone, while 2\textendash3 MeV electrons undergo pitch angle scattering at a rate of the order of 10-6\textendash10-5 s-1, 5\textendash10 MeV electrons can be diffused more efficiently at a rate of the order of 10-3\textendash10-2 s-1, which approaches the strong diffusion level and results in a moderately or heavily filled loss cone for the atmospheric loss. The corresponding electron loss timescales (i.e., lifetimes) vary from several days at the energies of ~2 MeV to less than 1 h at ~10 MeV. This case study indicates the leading contribution of He+ band waves to radiation belt relativistic electron losses during the coexistence of three EMIC wave bands and suggests that the roles of different EMIC wave bands in the relativistic electron dynamics should be carefully incorporated in future modeling efforts.

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes

Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range \~300\textendash1500 Hz with the peak wave power density about 10-5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhile, hiss emissions are confined inside the plasmasphere, with a higher intensity and a broader area at a lower frequency. A sum of bi-Maxwellian distribution is used to model the observed anisotropic electron distributions and to evaluate the instability of waves. A three-dimensional ray tracing simulation shows that a portion of chorus emission outside the plasmasphere can propagate into the plasmasphere and evolve into plasmaspheric hiss. Moreover, hiss waves below 1 kHz are more intense and propagate over a broader area than those above 1 kHz, consistent with the observation. The current results can explain distributions of the observed hiss emission and provide a further support for the mechanism of evolution of chorus into hiss emissions.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022366

chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes

Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons

Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1\textendash0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (\~0.1 MeV) electrons, different from the normal chorus. For high-energy (>=0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to that of the normal chorus, but much stronger (up to 2 orders of magnitude) pitch-angle diffusion near the loss cone.

Gao, Zhonglei; Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2016GL067687

Cyclotron resonance; Hiss-like band; Low-frequency chorus; Radiation belt; Van Allen Probes; Rising tones; Van Allen Probes

2015

Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Wygant, J.;

Published by: Nature Communications      Published on: 12/2015

YEAR: 2015     DOI: 10.1038/ncomms10096

Van Allen Probes

Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.

Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065745

Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction

Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around between 0.3fce and 0.4fce, at latitude <7o. Moreover, chorus waves launched with initial normal angles either θ < 90o or >90o propagate along the field either northward or southward, and then bounce back either away from Earth for a lower frequency or towards Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Moreover, we examine a dayside event during a small storm C on 8 May 2014 (Dst≈-45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021376

chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction

Wave-driven butterfly distribution of Van Allen belt relativistic electrons

Van Allen radiation belts consist of relativistic electrons trapped by Earth\textquoterights magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90\textdegree further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day\textendashnight asymmetry in Earth\textquoterights magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Nature Communications      Published on: 05/2015

YEAR: 2015     DOI: 10.1038/ncomms9590

Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

2014

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100\% and 20\% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60\%-80\% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 hours. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Excitation of nightside magnetosonic waves observed by Van Allen Probes

During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagation and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L =5.6 to the location L =5.0, but remain nearly stable at locations L <5.0 Moreover, waves launched toward lower L-shells with different initial azimuthal angles propagate across different MLT regions with divergent paths at first, then gradually turn back toward higher L-shells and propagate across different MLT regions with convergent paths. The current results further reveal that MS waves are generated by a ring distribution of ~10 keV proton and proton ring in one region can contribute to the MS wave power in another region.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020481

magnetosonic wave; RBSP results; Van Allen Probes; Wave-particle interaction

Chorus-driven acceleration of radiation belt electrons in the unusual temporal/spatial regions

Cyclotron resonance with whistler-mode chorus waves is an important mechanism for the local acceleration of radiation belt energetic electrons. Such acceleration process has been widely investigated during the storm times, and its favored region is usually considered to be the low-density plasmatrough with magnetic local time (MLT) from midnight through dawn to noon. Here we present two case studies on the chorus-driven acceleration of radiation belt electrons in some \textquotedblleftunusual\textquotedblright temporal /spatial regions. (1) The first event recorded by the Van Allen Probes during the nonstorm times from 21 to 23 February 2013. Within two days, a new radiation belt centering around L=5.8 formed and gradually merged with the original outer belt. The corresponding relativistic electron fluxes increased by a factor of up to 50, accompanied by strong chorus waves. The quasi-linear STEERB model, including the local acceleration of detected chorus waves, can basically reproduce the observed 0.2\textendash5.0 MeV electron flux enhancement at the center of new belt. These results clearly illustrate the importance of chorus-driven local acceleration during the nonstorm times. (2) The second event observed by the Van Allen Probes in the duskside (MLT\~18) region on 2 October 2013. The quasi-linear diffusion analysis of STEERB code shows that, even in the duskside region with large ratio between the electron plasma frequency and the electron gyrofrequency, the detected intense (\~0.5 nT) chorus waves can still effectively accelerate radiation belt electrons. These results clearly exhibit the broader effective acceleration regions than usually estimated, at least for this one example.

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Zhu, Hui;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929875

Acceleration; Van Allen Belts; Van Allen Probes

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm

The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17\textendash19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1\textendash0.5fce (the electron equatorial gyrofrequency), with a peak spectral density \~10-4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102\textendash103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation.

Xiao, Fuliang; Yang, Chang; He, Zhaoguo; Su, Zhenpeng; Zhou, Qinghua; He, Yihua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2014

YEAR: 2014     DOI: 10.1002/2014JA019822

Van Allen Probes

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times.

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes

1998

Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere

Resonant diffusion curves for electron cyclotron resonance with field-aligned electromagnetic R mode and L mode electromagnetic ion cyclotron (EMIC) waves are constructed using a fully relativistic treatment. Analytical solutions are derived for the case of a single-ion plasma, and a numerical scheme is developed for the more realistic case of a multi-ion plasma. Diffusion curves are presented, for plasma parameters representative of the Earth\textquoterights magnetosphere at locations both inside and outside the plasmapause. The results obtained indicate minimal electron energy change along the diffusion curves for resonant interaction with L mode waves. Intense storm time EMIC waves are therefore ineffective for electron stochastic acceleration, although these waves could induce rapid pitch angle scattering for ≳ 1 MeV electrons near the duskside plasmapause. In contrast, significant energy change can occur along the diffusion curves for interaction between resonant electrons and whistler (R mode) waves. The energy change is most pronounced in regions of low plasma density. This suggests that whistler mode waves could provide a viable mechanism for electron acceleration from energies near 100 keV to above 1 MeV in the region outside the plasmapause during the recovery phase of geomagnetic storms. A model is proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.

Summers, D.; Thorne, Richard; Xiao, Fuliang;

Published by: Journal of Geophysical Research      Published on: 09/1998

YEAR: 1998     DOI: 10.1029/98JA01740

Local Acceleration due to Wave-Particle Interaction



  1      2