Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 56 entries in the Bibliography.


Showing entries from 51 through 56


2012

Global distribution of EMIC waves derived from THEMIS observations

[1] Electromagnetic ion cyclotron (EMIC) waves play an important role in magnetospheric dynamics and their global distribution has been of great interest. This paper presents the distribution of EMIC waves over a broader range than ever before, as enabled by observations with the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft from 2007 to 2010. Our major findings are: (1) There are two major peaks in the EMIC wave occurrence probability. One is at dusk and 8\textendash12 RE where the helium band dominates the hydrogen band waves. The other is at dawn and 10\textendash12 RE where the hydrogen band dominates the helium band waves. (2) In terms of wave spectral power the dusk events are stronger (≈10 nT2/Hz) than the dawn events (≈3 nT2/Hz). (3) The dawn waves have large normal angles (>45) in the hydrogen band and even larger normal angles

Min, Kyungguk; Lee, Jeongwoo; Keika, Kunihiro; Li, W.;

Published by: Journal of Geophysical Research      Published on: 05/2012

YEAR: 2012     DOI: 10.1029/2012JA017515

EMIC wave occurrence; EMIC waves; plasma waves; RBSP; Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

2010

Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons

We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (\~70\textdegreeS) Antarctic observatories in the range of 0600\textendash0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200\textendash2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antarctic observatories) also supports the deduced injection region. Since chorus waves are believed to be generated through the electron cyclotron instability by an anisotropic temperature distribution, we examine, by performing forward model tracing, whether the electrons injected during this substorm form a pancake-like pitch angle distribution when they arrive near the dawn-side magnetopause. We find that the onset time of the modeled pitch angle anisotropy is consistent with that of the observed chorus waves. We conclude that the development of the anisotropy is due to particle drift shell splitting.

Min, Kyungguk; Lee, Jeongwoo; Keika, Kunihiro;

Published by: American Geophysical Union      Published on: 10/2010

YEAR: 2010     DOI: 10.1029/2010JA015474

chorus and substorm; electron drift; RBSP; Substorm Injections; Van Allen Probes

2009

Analysis of Spinning Spacecraft with Wire Booms Part 1: Derivation of Nonlinear Dynamics

Algebraic expressions for the governing equations of motion are developed to describe a spinning spacecraft with flexible appendages. Two limiting cases are investigated: appendages that are self-restoring and appendages that require spacecraft motion to restore. Solar panels have sufficient root stiffness to self-restore perturbations. Radial wire antennae have little intrinsic root stiffness and require centripetal acceleration from spacecraft rotations to restore perturbations. External forces applied for attitude corrections can displace spacecraft appendages from their steady-state position. The Radiation Belt Storm Probe (RBSP) satellite is used as an example to explore numerical results for several maneuvers.

Kemp, Brian; McGee, Timothy; Shankar, Uday;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6202

RBSP; Van Allen Probes

Analysis of Spinning Spacecraft with Wire Booms Part 2: Out-of-Plane Dynamics and Maneuvers

An analysis of the dynamics for a spin stabilized spacecraft consisting of a rigid central hub with four long exible wire booms is presented. The analysis focuses on the dynamics out of the spin plane of the spacecraft. Companion papers will focus on the derivations of the full nonlinear dynamics and analysis of the in plane dynamics. A linear analysis is used to estimate the mode shapes of the free response of the system, the e ects of various damping mechanisms on these modes, and the dynamic response of the system to various maneuvers. The results of an independent simulation of the full nonlinear dynamics of the system are also provided to support the linear analysis. While the dynamics and analysis approach presented can be applied to the general class of spin stabilized spacecraft having multiple exible wire booms, the numeric parameters studied represent those of the satellites from the Radiation Belt Storm Probe (RBSP) mission. The mission, part of NASA\textquoterights Living With a Star Geospace Program, will launch two Earth-orbiting spacecraft to investigate how populations of relativistic electrons and ions in the region known as the Radiation Belts are formed and change in response to variable inputs of energy from the Sun.

McGee, Timothy; Shankar, Uday; Kemp, Brian;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6203

RBSP; Van Allen Probes

Analysis of Spinning Spacecraft with Wire Booms Part 3: Spin-Plane Dynamics, Maneuvers, and Deployment

Several science spacecraft use long wire booms as electric-field antennas and the spacecraft spins to maintain the orientation of these flexible wires. These booms account for a majority of the total spacecraft inertia while weighing only a small fraction of the total mass. The spacecraft dynamics is therefore dominated by these booms. The analysis of such spacecraft is further complicated by other flexible ap- pendages and the presence of damping in the system, both inherent in the sys- tem and from damping mechanisms deliberately added into the system. This pa- per and two companion papers analyze such spacecraft. The first of these derives the governing nonlinear equations from first principles. Under certain conditions, the dynamics neatly separate into spin-plane and out-of-plane dynamics. The sec- ond companion paper examines the out-of-plane dynamics and maneuvers. This paper examines the spin-plane dynamics of such a spin-stabilized spacecraft. It analyzes the fundamental modes and mode-shapes of the system, spin-plane ma- neuvers, and the effects of boom deployment. While this analysis is applicable to any spin-stabilized spacecraft with flexible radial booms, the analysis was driven by the needs of the Radiation Belt Storm Probes (RBSP) spacecraft currently being designed at the Johns Hopkins University Applied Physics Laboratory, as part of NASA\textquoterights \textquotedblleftLiving With a Star\textquotedblright program. This paper provides an analytical treatment of the spacecraft dynamics. These theoretical predictions are verified using fully non-linear six degree-of-freedom simulations.

Shankar, Uday; McGee, Timothy; Kemp, Brian;

Published by:       Published on: 08/2009

YEAR: 2009     DOI: 10.2514/6.2009-6204

RBSP; Van Allen Probes



  1      2