Bibliography
Notice:

Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2021 
Abstract Equatorial magnetosonic waves, together with chorus and plasmaspheric hiss, play key roles in the dynamics of energetic electron fluxes in the magnetosphere. Numerical models, developed following a first principles approach, that are used to study the evolution of high energy electron fluxes are mainly based on quasilinear diffusion. The application of such numerical codes requires statistical models for the distribution of key magnetospheric wave modes to estimate the appropriate diffusion coefficients. These waves are generally statistically modelled as a function of spatial location and geomagnetic indices (e.g. AE, Kp, or Dst). This study presents a novel dynamic spatiotemporal model for equatorial magnetosonic (EMS) wave amplitude, developed using the Nonlinear AutoRegressive Moving Average eXogenous (NARMAX) machine learning approach. The EMS wave amplitude, measured by the Van Allen Probes, are modelled using the time lags of the solar wind and geomagnetic indices as inputs as well as the location at which the measurement is made. The resulting model performance is assessed on a separate Van Allen Probes dataset, where the prediction efficiency was found to be 34.0\% and the correlation coefficient was 56.9\%. With more training and validation data the performance metrics could potentially be improved, however, it is also possible that the EMS wave distribution is affected by stochastic factors and the performance metrics obtained for this model are close to the potential maximum. Boynton, R.; Walker, S.; Aryan, H.; Hobara, Y.; Balikhin, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021 DOI: https://doi.org/10.1029/2020JA028439 magnetosonic waves; Machine learning; NARMAX; Van Allen Probes 
2020 
The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of Lshell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of Lshell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit. Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2020 YEAR: 2020 DOI: https://doi.org/10.1029/2020JA028018 electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster 
2014 
Simulation of highenergy radiation belt electron fluxes using NARMAXVERB coupled codes This study presents a fusion of datadriven and physicsdriven methodologies of energetic electron flux forecasting in the outer radiation belt. Datadriven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physicsbased Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. Pakhotin, I.; Drozdov, A; Shprits, Y; Boynton, R.; Subbotin, D.; Balikhin, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2014 YEAR: 2014 DOI: 10.1002/2014JA020238 
Statistical analysis of electron lifetimes at GEO: Comparisons with chorusdriven losses The population of electrons in the Earth\textquoterights outer radiation belt increases when the magnetosphere is exposed to highspeed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to \~1 MeV with an analytical model of lifetimes, where electron losses are caused by their resonant interaction with oblique chorus waves, using average wave intensities obtained from Cluster statistics. However, above 500 keV, the measured lifetimes increase with energy becomes less steep, almost stopping. This could partly stem from the difficultly of identifying lifetimes larger than 10 days, for high energy, with the methods and instruments of the present study at GEO. It could also result from the departure of the actual geomagnetic field from a dipolar shape, since a compressed field on the dayside should preferentially increase chorusinduced losses at high energies. However, during nearly quiet geomagnetic conditions corresponding to lifetime measurement periods, it is more probably an indication that outward radial diffusion imposes some kind of upper limit on lifetimes of highenergy electrons near geostationary orbit. Boynton, R.; Balikhin, M.; Mourenas, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2014 YEAR: 2014 DOI: 10.1002/2014JA019920 
1