Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2019

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

Multi-instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection

Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large-scale SAPS (LS-SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0456 UT. In the conjugate magnetosphere, a large SAPS electric field (\~8 mV/m) pointing radially outward, a local magnetic field dip, and a dispersionless ion injection were observed simultaneously by VAP-A at L shell = 3.5 and MLT = 20. The particle injection observed by VAP-A is likely associated with the particle injection observed by the Geostationary Operational Environmental Satellite 15 near 20 MLT. Magnetic perturbations observed by the ground magnetometers and flow reversals observed by SuperDARN reveal that this mesoscale enhancement of SAPS developed near the Harang reversal and before the substorm onset. The observed complex signatures in both space and ground can be explained by a two-loop current wedge generated by the perturbed plasma pressure gradient and the diamagnetic effect of the structured ring current following particle injection.

Wang, Zihan; Zou, Shasha; Shepherd, Simon; Liang, Jun; Gjerloev, Jesper; Ruohoniemi, Michael; Kunduri, Bharat; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019JA026535

Field-Aligned Current; Particle Injection; Sub-auroral Polarization Stream; Van Allen Probes

2015

A Summary of the BARREL Campaigns: Technique for studying electron precipitation

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth\textquoterights radiation belts. BARREL\textquoterights array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA\textquoterights Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < -40 nT. Similarly, two minor geomagnetic storms occurred during the second campaign, starting in December of 2013 and continuing on into February of 2014. Throughout the two campaigns, BARREL observed electron precipitation over a wide range of energies and exhibiting temporal structure from 100\textquoterights of milliseconds to hours. Relativistic electron precipitation was observed in the dusk to midnight sector, and microburst precipitation was primarily observed near dawn. In this paper we review the two BARREL science campaigns and discuss the data products and analysis techniques as applied to relativistic electron precipitation observed on 19 January 2013.

Woodger, L.; Halford, A.; Millan, R.; McCarthy, M.; Smith, D.; Bowers, G.; Sample, J.; Anderson, B.; Liang, X.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020874

electron precipitation; event timing; gamma ray burst; multi-point observation; Radiation belts; Van Allen Probes; x-ray spectroscopy

2014

An unusual long-lived relativistic electron enhancement event excited by sequential CMEs

An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 \texttimes 102 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 to 3.5 \texttimes 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak remains over 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 for about 30 days. The drift-resonance between ULF waves, which arose from high-speed solar wind and frequent impulses of solar wind dynamic pressure, and energetic electrons injected by substorms could be an important acceleration mechanism in this event. The local acceleration by whistler mode chorus could be another mechanism contributing to this enhancement. The plasmaspheric response to the interplanetary disturbances reveals that the enhanced outer zone is divided into two portions by the plasmapause. Accordingly, the slow loss rate in the plasmasphere due to hiss primarily contributed to the long-lived characteristic of this event. This event reveals that the outer zone population behaviors are dominated by the interplanetary variations together with the responses of geomagnetic field and plasmasphere to these variations.

Yang, Xiao; Zhu, Guang; Zhang, Xiao; Sun, Yue; Liang, Jin; Wei, Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA019797

Geomagnetic storm/substorm; Interplanetary magnetic field; Plasmapause; Relativistic electron; Solar wind

2013

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes



  1