Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 9 entries in the Bibliography.


Showing entries from 1 through 9


2021

Evidence of Alfvenic Poynting flux as the primary driver of auroral motion during a geomagnetic substorm

Abstract Geomagnetic substorms are major energy transfer events where energy stored in the Earths magnetotail is released into the ionosphere. Substorm phenomena, including auroral activities, earthward Poynting flux, magnetic field dipolarization, etc, have been extensively studied. However, the complex interplay among them is not fully understood. In a fortuitous event on June 07, 2013, the twin Van Allen Probes (separated by 0.4 hour in local time) observed bursts of earthward Alfvenic Poynting flux in the vicinity of the plasma sheet boundary layer (PSBL). The Poynting flux bursts correlate with enhancements of auroral brightness around the footpoints of both spacecraft. This indicates a temporal and spatial correlation between the auroral brightening and Poynting flux bursts, and that the auroral motion is directly linked to the perpendicular expansion of the Alfven wave. These observations suggest that the Alfvenic Poynting flux is a primary driver for the auroral electron acceleration. Around the time of auroral brightening, a dipolarization was seen to propagate more than 4 hours in local time during a 20 min period. The azimuthal phase speed of this dipolarization (2 deg/min) is too small to explain the azimuthal motion of the aurora (13.6 deg/min), but the dipolarization could be related to the generation of the Alfvenic Poynting flux through phase mixing at strong density gradients like those in the PSBL. This article is protected by copyright. All rights reserved.

Tian, S.; Colpitts, C.; Wygant, J.; Cattell, C.; Ferradas, C.; Igl, A.; Larsen, B.; Reeves, G.; Donovan, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029019

Poynting flux; auroral physics; discrete arc; Dipolarization; Alfven waves; Van Allen Probes

2019

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

2015

Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems

Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10\textquoterights keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10\textquoterights keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4-5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth\textquoterights atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. Such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades, and may be a result of nonlinear chorus wave interactions in the equatorial region.

Jaynes, A.; Lessard, M.; Takahashi, K.; Ali, A.; Malaspina, D.; Michell, R.; Spanswick, E.; Baker, D.; Blake, J.; Cully, C.; Donovan, E.; Kletzing, C.; Reeves, G.; Samara, M.; Spence, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021380

aurora; precipitation; pulsating aurora; substorms; ULF waves; Van Allen Probes; VLF waves

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3\textendash4 km s-1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ -103. During the event the spacecraft \textendash being on tailward stretched field lines ~0.5 RE outside the plasmapause that mapped into the ionosphere conjugate to the auroral undulations \textendash encountered intense poloidal ULF oscillations in the magnetic and electric fields. We identify the field oscillations to be the second harmonic mode along the magnetic field line through comparisons of the observed wave properties with theoretical predictions. The field oscillations were accompanied by oscillations in proton and electron fluxes. Most interestingly, both field and particle oscillations at the spacecraft had one-to-one association with the auroral luminosity oscillations around its footprint. Our findings strongly suggest that this auroral undulation event is closely linked to the generation of second harmonic poloidal waves

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes

2014

Characterization of the energy-dependent response of riometer absorption

Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth\textquoterights ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth\textquoterights magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlation analysis between signatures observed by riometer stations, and assuming electron motion due to gradient and curvature drift, results in inferred energies of 10-100 keV, with a clear maximum in occurrence for 40-60 keV electrons. One event is considered in detail utilizing riometer absorption signatures obtained from several stations. The mean inferred energies for the initial rise time and peak of the absorption after correction for electric field effects were ~70 keV, and ~60 keV, respectively. The analyses presented provide a means to characterize the energy of electrons to which riometers are responding in both a statistical sense, and during the evolution of individual events.

Kellerman, A.; Shprits, Y; Makarevich, R.; Spanswick, E.; Donovan, E.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020027

cosmic noise absorption; electron energy; particle modeling; Radiation belts; riometer; electron precipitation

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward boundary intensification that was followed by an auroral streamer reaching the equatorward boundary of the auroral oval. Three THEMIS satellites in the magnetotail detected flow bursts and one of the THEMIS satellites in the outer plasmasphere observed a ring current injection together with electromagnetic ion cyclotron wave intensifications. Proton auroral brightenings occurred multiple times throughout the storm main phase and a majority of those were correlated with auroral streamers reaching the auroral equatorward boundary. This sequence highlights the important role of transient flow bursts and particle injections for plasma transport into the inner magnetosphere and thus reflects a tail-inner magnetospheric interaction process in which transient flow bursts play an important role in injecting ring current ions into the plasmasphere, causing rapid modulation of precipitation and the resultant subauroral proton aurora.

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

2013

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes



  1