Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2018

Rapid Enhancements of the Seed Populations in the Heart of the Earth\textquoterights Outer Radiation Belt: A Multicase Study

To better understand rapid enhancements of the seed populations (hundreds of keV electrons) in the heart of the Earth\textquoterights outer radiation belt (L* ~ 3.5\textendash5.0) during different geomagnetic activities, we investigate three enhancement events measured by Van Allen Probes in detail. Observations of the fluxes and the pitch angle distributions of energetic electrons are analyzed to determine rapid enhancements of the seed populations. Our study shows that three specified processes associated with substorm electron injections can lead to rapid enhancements of the seed populations, and the electron energy increases up to 342 keV. In the first process, substorm electron injections accompanied by the transient and intense substorm electric fields can directly lead to rapid enhancements of the seed populations in the heart of the outer radiation belt. In the second process, the substorm injected electrons are first trapped in the outer radiation belt and subsequently transported into L* < 4.5 by the convection electric field. In the third process, the lower energy electrons are first injected at L* ~ 5.3 and then undergo drift resonance with ultralow-frequency waves. These accelerated electrons by ultralow-frequency waves are further transported into L* < 4.5 due to the convection electric field. This process is consistent with the radial diffusion. Our results suggest that these specified processes are important for understanding the dynamics of the seed populations in the heart of the outer radiation belt.

Tang, C.; Xie, X.; Ni, B.; Su, Z.; Reeves, G.; Zhang, J.-C.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.; Wygant, J.; Dai, G;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2017JA025142

enhanced convection; Substorm Injections; the outer radiation belt; the seed population; ULF waves; Van Allen Probes

2017

Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study

Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of \textquotedblleftlarge flux enhancement\textquotedblright and \textquotedblleftsmall flux enhancement.\textquotedblright For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons (592 keV, 1 MeV, 1.8 MeV, and 2.1 MeV) during the storm recovery phase decrease with electron kinetic energy, being 0.92, 0.68, 0.49, and 0.39, respectively. The correlation coefficients between the peak flux of the seed population and those of relativistic electrons are 0.92, 0.81, 0.75, and 0.73. For small flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons are relatively smaller, while the peak flux of the seed population is well correlated with those of relativistic electrons (correlation coefficients >0.84). It is suggested that during geomagnetic storms there is a good correlation between the seed population and <=1 MeV electrons and the seed population is important to the relativistic electron dynamics.

Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA023905

relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes

2015

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by one order of magnitude in less than 3 hours in the outer radiation belt (L>4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes

Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study

Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressional Pc4 poloidal waves is found correlated with the variation of the solar wind dynamic pressure, indicating their origin in the solar wind. Both compressional and non-compressional waves preferentially occur on the dayside near noon at L~5-6. In addition, compressional poloidal waves are observed at MLT 18-24 on the nightside. The location of the Pc4 poloidal waves relative to the plasmapause is investigated. The RBSP statistical results may shed light on the in-depth investigations of the generation and propagation of Pc4 poloidal waves.

Dai, Lei; Takahashi, Kazue; Lysak, Robert; Wang, Chi; Wygant, John; Kletzing, Craig; Bonnell, John; Cattell, Cynthia; Smith, Charles; MacDowall, Robert; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Tao, Xin; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021134

Geomagnetic storm; Pc4 ULF waves; poloidal waves; ring current; solar wind dynamic pressure; Van Allen Probes

2014

Evidence for injection of relativistic electrons into the Earth\textquoterights outer radiation belt via intense substorm electric fields

Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic \textquoteleftkiller\textquoteright electrons (>=MeV) in addition to 10\textendash100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer radiation belt. In these two events, injected relativistic electrons dominated the substorm timescale enhancement of MeV electrons as observed at geosynchronous orbit.

Dai, Lei; Wygant, John; Cattell, Cynthia; Thaller, Scott; Kersten, Kris; Breneman, Aaron; Tang, Xiangwei; Friedel, Reiner; Claudepierre, Seth; Tao, Xin;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059228

radiation belt relativistic electrons; substorm dipolarization; substorm electric fields; substorm injection



  1