Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 14 entries in the Bibliography.


Showing entries from 1 through 14


2021

Field-Aligned Electron Density Distribution of the Inner Magnetosphere Inferred from Coordinated Observations of Arase and Van Allen Probes

Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron density along the field. The RBSP and the Arase satellites have different inclinations and sometimes they simultaneously fly near the equator and off the equator on the same magnetic field line. Using electron densities observed by these satellites during the 7 Sep 2017 storm, we successfully estimated the electron density distribution along of the field lines inside the partially refilled plasmasphere, outside of the plasmasphere and in the tail-like structure called a plume.

Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029073

plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

2019

Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation

Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10-30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an azimuthal wave number (m number) of ~220 and ~260 for each wave packet, respectively. Such eastward propagating high-m (m > 100) waves were seldom reported in previous studies. The condition of drift-bounce resonance is well satisfied for the estimated m numbers in both events. Proton phase space density was also examined to understand the wave excitation mechanism. We obtained temporal variations of the energy and radial gradient of the proton phase space density, and find that temporal intensification of the radial gradient can generate the two wave packets. The cold electron density around the spacecraft apogee was > 100 cm-3 in the present events, and hence the eigen-frequency of the Pc 4 waves became lower. This causes the increase of the m number which satisfies the resonance condition of drift-bounce resonance for 10-30 keV protons, and meets the condition for destabilization due to gyro-kinetic effect.

Yamamoto, K.; e, Nos\; Keika, K.; Hartley, D.P.; Smith, C.W.; MacDowall, R.J.; Lanzerotti, L.J.; Mitchell, D.G.; Spence, H.E.; Reeves, G.D.; Wygant, J.R.; Bonnell, J.W.; Oimatsu, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027158

drift-bounce resonance; Geomagnetic storm; plasmasphere; ring current; substorm; ULF wave; Van Allen Probes

2018

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift-bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30\textdegree or 150\textdegree, and 170\textendash180 keV for α = 50\textdegree or 130\textdegree. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbound legs of the orbit. We find the gradient to be outward on both legs, which means that energy is transferred from the protons to the wave. During the poloidal Pc4 wave event, the Dst* index shows a measurable increase of ~6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and from the variation of proton flux by the drift-bounce resonance. We suggest that energy transfer from the ring current protons to the poloidal Pc4 wave via the drift-bounce resonance contributes to up to ~85 \% of the increase of the Dst* index.

Oimatsu, S.; e, M.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; Smith, C.; MacDowall, R.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA025087

Van Allen Probes

2017

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultralow frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHz band and included multiharmonic toroidal waves visible up to the eleventh harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined by the cross-phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2014JA020373

multispacecraft observation; plasmasphere; ULF waves; Van Allen Probes

2016

Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L < 6.6

We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20\textendash50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1\textendash5 keV appears with a clear energy-dispersion signature only for O+, and (5) the energy-dispersed O+ flux enhancement appears in directions parallel or anti-parallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O+ ions at >20 keV. We conclude that O+ ions at L = 5.4\textendash6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5\textendash5.4, however, only the former acceleration is plausible. We also conclude that the field-aligned energy-dispersed O+ ions at 0.1\textendash5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.

e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022549

Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes

Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout

We examined an electron flux dropout during the 12\textendash14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12\textendash14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12\textendash13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13\textendash14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst < -100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near pre-storm values, possibly in response to strong ultra-low frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

Sigsbee, K.; Kletzing, C.; Smith, C.; MacDowall, Robert; Spence, Harlan; Reeves, Geoff; Blake, J.; Baker, D.; Green, J.; Singer, H.; Carr, C.; ik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2014JA020877

Dst Effect; Electron Flux Dropouts; EMIC waves; magnetopause shadowing; ULF Pulsations; Van Allen Probes

2015

Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study

Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressional Pc4 poloidal waves is found correlated with the variation of the solar wind dynamic pressure, indicating their origin in the solar wind. Both compressional and non-compressional waves preferentially occur on the dayside near noon at L~5-6. In addition, compressional poloidal waves are observed at MLT 18-24 on the nightside. The location of the Pc4 poloidal waves relative to the plasmapause is investigated. The RBSP statistical results may shed light on the in-depth investigations of the generation and propagation of Pc4 poloidal waves.

Dai, Lei; Takahashi, Kazue; Lysak, Robert; Wang, Chi; Wygant, John; Kletzing, Craig; Bonnell, John; Cattell, Cynthia; Smith, Charles; MacDowall, Robert; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Tao, Xin; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021134

Geomagnetic storm; Pc4 ULF waves; poloidal waves; ring current; solar wind dynamic pressure; Van Allen Probes

Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

We study the formation process of an oxygen torus during the 12\textendash15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfv\ en waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M \~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0\textendash4.0 and L = 3.7\textendash4.5, respectively, on the morning side. The oxygen torus has M = 4.5\textendash8 amu and extends around the plasmapause that is identified at L\~3.2\textendash3.9. We find that during the initial phase, M is 4\textendash7 amu throughout the plasma trough and remains at \~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.

e, Nos\; Oimatsu, S.; Keika, K.; Kletzing, C.; Kurth, W.; De Pascuale, S.; Smith, C.; MacDowall, R.; Nakano, S.; Reeves, G.; Spence, H.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020593

inner magnetosphere; magnetic storm; oxygen torus; plasmasphere; ring current; ULF waves; Van Allen Probes

2014

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020373

multispacecraft observation; Van Allen Probes; plasmasphere; ULF waves

2013

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.

Kletzing, C.; Kurth, W.; Acuna, M.; MacDowall, R.; Torbert, R.; Averkamp, T.; Bodet, D.; Bounds, S.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J.; Dvorsky, R.; Hospodarsky, G.; Howard, J.; Jordanova, V.; Johnson, R.; Kirchner, D.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff, R.; Phillips, J.; Piker, C.; Remington, S.; Rowland, D.; Santolik, O.; Schnurr, R.; Sheppard, D.; Smith, C.; Thorne, R.; Tyler, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9993-6

RBSP; Van Allen Probes

Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction

Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L\~5. The observed wave period, Eφ/Br ratio and the 90\textdegree phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with \~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the \textquotedblleftfishbone\textquotedblright instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations.

Dai, L.; Takahashi, K; Wygant, J.; Chen, L.; Bonnell, J; Cattell, C.; Thaller, S.; Kletzing, C.; Smith, C.; MacDowall, R.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Funsten, H.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50800

RBSP; Van Allen Probes



  1