Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3761 entries in the Bibliography.


Showing entries from 251 through 300


2021

Dependence of Relativistic Electron Precipitation in the Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator

Abstract We investigate relativistic electron precipitation events detected by POES in low-Earth orbit in close conjunction with Van Allen Probe A observations of EMIC waves near the geomagnetic equator. We show that the occurrence rate of > 0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃ 1.0 − 2.5 MeV, as expected from quasi-linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, > 0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6 − 1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0 − 2.5 MeV), indicative of warm plasma effects for waves approaching the He+ gyrofrequency. We further show that most precipitation events had energies > 0.7 − 1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi-linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves. This article is protected by copyright. All rights reserved.

Zhang, X.-J.; Mourenas, D.; Shen, X.-C.; Qin, M.; Artemyev, A.; Ma, Q.; Li, W.; Hudson, M.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029193

EMIC waves; relativistic electron precipitation; minimum resonant energy; Van Allen Probes; POES; Radiation belts

Dependence of Relativistic Electron Precipitation in the Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator

Abstract We investigate relativistic electron precipitation events detected by POES in low-Earth orbit in close conjunction with Van Allen Probe A observations of EMIC waves near the geomagnetic equator. We show that the occurrence rate of > 0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃ 1.0 − 2.5 MeV, as expected from quasi-linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, > 0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6 − 1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0 − 2.5 MeV), indicative of warm plasma effects for waves approaching the He+ gyrofrequency. We further show that most precipitation events had energies > 0.7 − 1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi-linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves. This article is protected by copyright. All rights reserved.

Zhang, X.-J.; Mourenas, D.; Shen, X.-C.; Qin, M.; Artemyev, A.; Ma, Q.; Li, W.; Hudson, M.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029193

EMIC waves; relativistic electron precipitation; minimum resonant energy; Van Allen Probes; POES; Radiation belts

Dependence of Relativistic Electron Precipitation in the Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator

Abstract We investigate relativistic electron precipitation events detected by POES in low-Earth orbit in close conjunction with Van Allen Probe A observations of EMIC waves near the geomagnetic equator. We show that the occurrence rate of > 0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃ 1.0 − 2.5 MeV, as expected from quasi-linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, > 0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6 − 1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0 − 2.5 MeV), indicative of warm plasma effects for waves approaching the He+ gyrofrequency. We further show that most precipitation events had energies > 0.7 − 1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi-linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves. This article is protected by copyright. All rights reserved.

Zhang, X.-J.; Mourenas, D.; Shen, X.-C.; Qin, M.; Artemyev, A.; Ma, Q.; Li, W.; Hudson, M.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029193

EMIC waves; relativistic electron precipitation; minimum resonant energy; Van Allen Probes; POES; Radiation belts

Dependence of Relativistic Electron Precipitation in the Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator

Abstract We investigate relativistic electron precipitation events detected by POES in low-Earth orbit in close conjunction with Van Allen Probe A observations of EMIC waves near the geomagnetic equator. We show that the occurrence rate of > 0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃ 1.0 − 2.5 MeV, as expected from quasi-linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, > 0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6 − 1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0 − 2.5 MeV), indicative of warm plasma effects for waves approaching the He+ gyrofrequency. We further show that most precipitation events had energies > 0.7 − 1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi-linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves. This article is protected by copyright. All rights reserved.

Zhang, X.-J.; Mourenas, D.; Shen, X.-C.; Qin, M.; Artemyev, A.; Ma, Q.; Li, W.; Hudson, M.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029193

EMIC waves; relativistic electron precipitation; minimum resonant energy; Van Allen Probes; POES; Radiation belts

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Simultaneous observation of two isolated proton auroras at subauroral latitudes by a highly sensitive all-sky camera and Van Allen Probes

Abstract Isolated proton auroras (IPAs) appearing at subauroral latitudes are generated by energetic protons precipitating from the magnetosphere through interaction with electromagnetic ion cyclotron (EMIC) waves. An IPA thus indicates the spatial scale and temporal variation of wave–particle interactions in the magnetosphere. In this study, a unique event of simultaneous ground and magnetospheric satellite observations of two IPAs were conducted on March 16, 2015, using an all-sky imager at Athabasca, Canada and Van Allen Probes. The Van Allen Probes observed two isolated EMIC waves with frequencies of ∼1 and 0.4 Hz at L ≈ 5.0 when the satellite footprint crossed over the two IPAs. This suggests that the IPAs were caused by localized EMIC waves. Proton flux at 5–20 keV increased locally when the EMIC waves appeared. Electron flux at energies below ∼500 eV also increased. Temperature anisotropy of the energetic protons was estimated as 1.5–2.5 over a wide L-value range of 3.0–5.2. Electron density gradually decreased from L = 3.5 to L = 5.4, suggesting that the EMIC wave at L ≈ 5.0 was located in the gradual plasmapause. From these observations, we conclude that the localized IPAs and associated EMIC waves took place because of localized enhancement of energetic proton flux and plasma density structure near the plasmapause. The magnetic field observed by the satellite showed small variation during the wave observation, indicating that the IPAs were accompanied by the weak field-aligned current.

Nakmaura, Kohki; Shiokawa, Kazuo; Otsuka, Yuichi; Shinbori, Atsuki; Miyoshi, Yoshizumi; Connors, Martin; Spence, Harlan; Reeves, Geoff; Funsten, Herbert; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029078

isolated proton aurora; Van Allen Probes

Observational Evidence for Whistler Waves Guided/Ducted by the Inner and Outer Edges of the Plasmapause

Abstract With Van Allen Probes data, we present the observational support for whistler waves guided by the plasmapause based on a case study and statistical analyses. Due to the combined effects of inhomogeneous magnetic fields and plasma densities, whistler waves near the inner edge of plasmapause (plasmasphere side) will be guided by a HDD-like (HDD, high density duct) density gradient, and tend to have very small wave normal angles (WNAs ≤20°). In contrast, whistler waves around the outer edge of the plasmapause (plasmatrough side) guided by a LDD-like (LDD, low density duct) density gradient, tend to have quite large WNAs (≥∼60°). Moreover, the statistical analysis reveals the remarkably different properties of whistler waves around inner and outer edges of plasmapause. We suggest that the plasmapause density gradients may play a significant role in the distribution of whistler waves.

Chen, Rui; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL092652

Plasmapause; whistler wave; ducting effect; inner edge; outer edge; wave normal angle; Van Allen Probes

Observational Evidence for Whistler Waves Guided/Ducted by the Inner and Outer Edges of the Plasmapause

Abstract With Van Allen Probes data, we present the observational support for whistler waves guided by the plasmapause based on a case study and statistical analyses. Due to the combined effects of inhomogeneous magnetic fields and plasma densities, whistler waves near the inner edge of plasmapause (plasmasphere side) will be guided by a HDD-like (HDD, high density duct) density gradient, and tend to have very small wave normal angles (WNAs ≤20°). In contrast, whistler waves around the outer edge of the plasmapause (plasmatrough side) guided by a LDD-like (LDD, low density duct) density gradient, tend to have quite large WNAs (≥∼60°). Moreover, the statistical analysis reveals the remarkably different properties of whistler waves around inner and outer edges of plasmapause. We suggest that the plasmapause density gradients may play a significant role in the distribution of whistler waves.

Chen, Rui; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL092652

Plasmapause; whistler wave; ducting effect; inner edge; outer edge; wave normal angle; Van Allen Probes

Observational Evidence for Whistler Waves Guided/Ducted by the Inner and Outer Edges of the Plasmapause

Abstract With Van Allen Probes data, we present the observational support for whistler waves guided by the plasmapause based on a case study and statistical analyses. Due to the combined effects of inhomogeneous magnetic fields and plasma densities, whistler waves near the inner edge of plasmapause (plasmasphere side) will be guided by a HDD-like (HDD, high density duct) density gradient, and tend to have very small wave normal angles (WNAs ≤20°). In contrast, whistler waves around the outer edge of the plasmapause (plasmatrough side) guided by a LDD-like (LDD, low density duct) density gradient, tend to have quite large WNAs (≥∼60°). Moreover, the statistical analysis reveals the remarkably different properties of whistler waves around inner and outer edges of plasmapause. We suggest that the plasmapause density gradients may play a significant role in the distribution of whistler waves.

Chen, Rui; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL092652

Plasmapause; whistler wave; ducting effect; inner edge; outer edge; wave normal angle; Van Allen Probes

Whistler-mode waves trapped by density irregularities in the Earth s magnetosphere

Abstract Whistler-mode waves are electromagnetic waves pervasively observed in the Earth s and other planetary magnetospheres. They are considered to be mainly responsible for producing the hazardous radiation and diffuse aurora, which heavily relies on their properties. Density irregularities, frequently observed in the Earth s magnetospheres, are found to change largely the properties of whistler-mode waves. Here we report, using Van Allen Probes measurements, whistler-mode waves strongly modulated by two different density enhancements. With particle-in-cell simulations, we propose wave trapping caused by field-aligned density irregularities (ducts) may account for this phenomenon. Simulation results show that whistler-mode waves can be trapped inside the enhanced density ducts. These trapped waves remain quasi-parallel and usually get much larger amplitudes than those unducted whistler waves during propagation away from the magnetic equator, and tend to focus at a spatially narrow channel, consistent with observations. Our results imply density irregularities may be significant to modulate radiation-belt electrons. This article is protected by copyright. All rights reserved.

Ke, Yangguang; Chen, Lunjin; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Chen, Rui; Chen, Huayue; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092305

WHISTLER-MODE WAVES; density irregularities; Magnetosphere; Radiation belts; particle-in-cell simulation; Wave trapping; Van Allen Probes

Whistler-mode waves trapped by density irregularities in the Earth s magnetosphere

Abstract Whistler-mode waves are electromagnetic waves pervasively observed in the Earth s and other planetary magnetospheres. They are considered to be mainly responsible for producing the hazardous radiation and diffuse aurora, which heavily relies on their properties. Density irregularities, frequently observed in the Earth s magnetospheres, are found to change largely the properties of whistler-mode waves. Here we report, using Van Allen Probes measurements, whistler-mode waves strongly modulated by two different density enhancements. With particle-in-cell simulations, we propose wave trapping caused by field-aligned density irregularities (ducts) may account for this phenomenon. Simulation results show that whistler-mode waves can be trapped inside the enhanced density ducts. These trapped waves remain quasi-parallel and usually get much larger amplitudes than those unducted whistler waves during propagation away from the magnetic equator, and tend to focus at a spatially narrow channel, consistent with observations. Our results imply density irregularities may be significant to modulate radiation-belt electrons. This article is protected by copyright. All rights reserved.

Ke, Yangguang; Chen, Lunjin; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Chen, Rui; Chen, Huayue; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092305

WHISTLER-MODE WAVES; density irregularities; Magnetosphere; Radiation belts; particle-in-cell simulation; Wave trapping; Van Allen Probes

Whistler-mode waves trapped by density irregularities in the Earth s magnetosphere

Abstract Whistler-mode waves are electromagnetic waves pervasively observed in the Earth s and other planetary magnetospheres. They are considered to be mainly responsible for producing the hazardous radiation and diffuse aurora, which heavily relies on their properties. Density irregularities, frequently observed in the Earth s magnetospheres, are found to change largely the properties of whistler-mode waves. Here we report, using Van Allen Probes measurements, whistler-mode waves strongly modulated by two different density enhancements. With particle-in-cell simulations, we propose wave trapping caused by field-aligned density irregularities (ducts) may account for this phenomenon. Simulation results show that whistler-mode waves can be trapped inside the enhanced density ducts. These trapped waves remain quasi-parallel and usually get much larger amplitudes than those unducted whistler waves during propagation away from the magnetic equator, and tend to focus at a spatially narrow channel, consistent with observations. Our results imply density irregularities may be significant to modulate radiation-belt electrons. This article is protected by copyright. All rights reserved.

Ke, Yangguang; Chen, Lunjin; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Chen, Rui; Chen, Huayue; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092305

WHISTLER-MODE WAVES; density irregularities; Magnetosphere; Radiation belts; particle-in-cell simulation; Wave trapping; Van Allen Probes

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To avoid the overfitting and optimize the model generalization, 5493 events during the period from September 2012 to December 2015 are adopted for division into the training set and validation set in terms of the 10-fold cross validation method, and the remaining 1044 events are used as the test set. The model parameterized by only AE or Kp index can reproduce the plasmapause locations similar to those modeled using all five considered solar wind and geomagnetic parameters. Model evaluation on the test set indicate that our neural network model is capable of predicting the plasmapause location with the lowest RMSE. Our model can also produce a smooth MLT variation of the plasmapause location with good accuracy, which can be incorporated into global radiation belt simulations and space weather forecasts under a variety of geomagnetic conditions. This article is protected by copyright. All rights reserved.

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

Published by: Space Weather      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To avoid the overfitting and optimize the model generalization, 5493 events during the period from September 2012 to December 2015 are adopted for division into the training set and validation set in terms of the 10-fold cross validation method, and the remaining 1044 events are used as the test set. The model parameterized by only AE or Kp index can reproduce the plasmapause locations similar to those modeled using all five considered solar wind and geomagnetic parameters. Model evaluation on the test set indicate that our neural network model is capable of predicting the plasmapause location with the lowest RMSE. Our model can also produce a smooth MLT variation of the plasmapause location with good accuracy, which can be incorporated into global radiation belt simulations and space weather forecasts under a variety of geomagnetic conditions. This article is protected by copyright. All rights reserved.

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

Published by: Space Weather      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To avoid the overfitting and optimize the model generalization, 5493 events during the period from September 2012 to December 2015 are adopted for division into the training set and validation set in terms of the 10-fold cross validation method, and the remaining 1044 events are used as the test set. The model parameterized by only AE or Kp index can reproduce the plasmapause locations similar to those modeled using all five considered solar wind and geomagnetic parameters. Model evaluation on the test set indicate that our neural network model is capable of predicting the plasmapause location with the lowest RMSE. Our model can also produce a smooth MLT variation of the plasmapause location with good accuracy, which can be incorporated into global radiation belt simulations and space weather forecasts under a variety of geomagnetic conditions. This article is protected by copyright. All rights reserved.

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

Published by: Space Weather      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. We identified 14 ULF wave-ion interaction cases from 2-year Van Allen Probes data. In these cases, 180° phase shifts across pitch angle are observed at particular energies. Near these energies, pitch angle-dependent PSD bump-on-tail distributions were also observed. As a result, at fixed energies, the sign of ion PSD energy gradient changes across pitch angle, which then can result in the observed 180° phase shift. Based on the observations, we suggest 180° phase shifts across pitch angle can also result from pitch angle-dependent bump-on-tail distributions, which should be taken into account in future ULF wave-ion interaction studies. This article is protected by copyright. All rights reserved.

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. We identified 14 ULF wave-ion interaction cases from 2-year Van Allen Probes data. In these cases, 180° phase shifts across pitch angle are observed at particular energies. Near these energies, pitch angle-dependent PSD bump-on-tail distributions were also observed. As a result, at fixed energies, the sign of ion PSD energy gradient changes across pitch angle, which then can result in the observed 180° phase shift. Based on the observations, we suggest 180° phase shifts across pitch angle can also result from pitch angle-dependent bump-on-tail distributions, which should be taken into account in future ULF wave-ion interaction studies. This article is protected by copyright. All rights reserved.

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. We identified 14 ULF wave-ion interaction cases from 2-year Van Allen Probes data. In these cases, 180° phase shifts across pitch angle are observed at particular energies. Near these energies, pitch angle-dependent PSD bump-on-tail distributions were also observed. As a result, at fixed energies, the sign of ion PSD energy gradient changes across pitch angle, which then can result in the observed 180° phase shift. Based on the observations, we suggest 180° phase shifts across pitch angle can also result from pitch angle-dependent bump-on-tail distributions, which should be taken into account in future ULF wave-ion interaction studies. This article is protected by copyright. All rights reserved.

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Generation of realistic short chorus wave packets

Abstract Most lower-band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modelling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition with resonance non-overlap, as well as with results from Vlasov Hybrid Simulations of chorus wave generation in an inhomogeneous magnetic field in the presence of one or two simultaneous triggering waves. We show that the observed moderate amplitude short chorus wave packets can be formed by a superposition of two or more waves generated near the magnetic equator with a sufficiently large frequency difference.

Nunn, D.; Zhang, X.-J.; Mourenas, D.; Artemyev, A.;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092178

chorus waves; Radiation belts; Wave-particle interaction; Van Allen Probes

Generation of realistic short chorus wave packets

Abstract Most lower-band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modelling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition with resonance non-overlap, as well as with results from Vlasov Hybrid Simulations of chorus wave generation in an inhomogeneous magnetic field in the presence of one or two simultaneous triggering waves. We show that the observed moderate amplitude short chorus wave packets can be formed by a superposition of two or more waves generated near the magnetic equator with a sufficiently large frequency difference.

Nunn, D.; Zhang, X.-J.; Mourenas, D.; Artemyev, A.;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092178

chorus waves; Radiation belts; Wave-particle interaction; Van Allen Probes

Generation of realistic short chorus wave packets

Abstract Most lower-band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modelling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition with resonance non-overlap, as well as with results from Vlasov Hybrid Simulations of chorus wave generation in an inhomogeneous magnetic field in the presence of one or two simultaneous triggering waves. We show that the observed moderate amplitude short chorus wave packets can be formed by a superposition of two or more waves generated near the magnetic equator with a sufficiently large frequency difference.

Nunn, D.; Zhang, X.-J.; Mourenas, D.; Artemyev, A.;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092178

chorus waves; Radiation belts; Wave-particle interaction; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes



  4      5      6      7      8      9