• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 46 entries in the Bibliography.

Showing entries from 1 through 46


Evening side EMIC waves and related proton precipitation induced by a substorm

Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The proton flux enhancement at every spacecraft coincided with the EMIC wave enhancement or appearance. This data shows the excitation of EMIC waves first inside an expanding substorm wedge and then by a drifting cloud of injected protons. Low-orbiting NOAA/POES and MetOp satellites observed precipitation of energetic protons nearly conjugate with the EMIC wave observations in the magnetosphere. The proton pitch-angle diffusion coefficient and the strong diffusion regime index were calculated based on the observed wave, plasma and magnetic field parameters. The diffusion coefficient reaches a maximum at energies corresponding well to the energy range of the observed proton precipitation. The diffusion coefficient values indicated the strong diffusion regime, in agreement with the equality of the trapped and precipitating proton flux at the low-Earth orbit. The growth rate calculations based on the plasma and magnetic field data from both VAP and Arase spacecraft indicated that the detected EMIC waves could be generated in the region of their observation or in its close vicinity.

Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI:

Van Allen Probes

Observational Evidence for Whistler Waves Guided/Ducted by the Inner and Outer Edges of the Plasmapause

Abstract With Van Allen Probes data, we present the observational support for whistler waves guided by the plasmapause based on a case study and statistical analyses. Due to the combined effects of inhomogeneous magnetic fields and plasma densities, whistler waves near the inner edge of plasmapause (plasmasphere side) will be guided by a HDD-like (HDD, high density duct) density gradient, and tend to have very small wave normal angles (WNAs ≤20°). In contrast, whistler waves around the outer edge of the plasmapause (plasmatrough side) guided by a LDD-like (LDD, low density duct) density gradient, tend to have quite large WNAs (≥∼60°). Moreover, the statistical analysis reveals the remarkably different properties of whistler waves around inner and outer edges of plasmapause. We suggest that the plasmapause density gradients may play a significant role in the distribution of whistler waves.

Chen, Rui; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI:

Plasmapause; whistler wave; ducting effect; inner edge; outer edge; wave normal angle; Van Allen Probes

Whistler-mode waves trapped by density irregularities in the Earth s magnetosphere

Abstract Whistler-mode waves are electromagnetic waves pervasively observed in the Earth s and other planetary magnetospheres. They are considered to be mainly responsible for producing the hazardous radiation and diffuse aurora, which heavily relies on their properties. Density irregularities, frequently observed in the Earth s magnetospheres, are found to change largely the properties of whistler-mode waves. Here we report, using Van Allen Probes measurements, whistler-mode waves strongly modulated by two different density enhancements. With particle-in-cell simulations, we propose wave trapping caused by field-aligned density irregularities (ducts) may account for this phenomenon. Simulation results show that whistler-mode waves can be trapped inside the enhanced density ducts. These trapped waves remain quasi-parallel and usually get much larger amplitudes than those unducted whistler waves during propagation away from the magnetic equator, and tend to focus at a spatially narrow channel, consistent with observations. Our results imply density irregularities may be significant to modulate radiation-belt electrons. This article is protected by copyright. All rights reserved.

Ke, Yangguang; Chen, Lunjin; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Chen, Rui; Chen, Huayue; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI:

WHISTLER-MODE WAVES; density irregularities; Magnetosphere; Radiation belts; particle-in-cell simulation; Wave trapping; Van Allen Probes

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP-ECT MagEIS data, identifies a sustained 10-day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOx and NOx and subsequent destruction of O3 in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOx concentrations in the mesosphere and upper stratosphere.

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI:

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

In situ Observations of Whistler-mode Chorus Waves Guided by Density Ducts

Abstract In this paper, we report the proof of the existence of density ducts in the Earth’s magnetosphere by studying in situ observations of whistler-mode chorus waves using NASA’s Van Allen Probe-A data. Chorus waves, originally excited inside the density ducts with wave normal angles (WNAs) smaller than the Gendrin angle at near equator region, are efficiently confined to a limited area inside density ducts (i.e., ducted regions), and remain with small WNAs as they propagate towards high latitudes. The ducted region becomes narrower for the higher-frequency waves. Chorus waves with WNAs larger than the Gendrin angle are not guided by density ducts. Our study reveals that density ducts can effectively control the property and distribution of chorus waves, and may ultimately regulate electron dynamics in the Earth’s or other planetary radiation belts. This article is protected by copyright. All rights reserved.

Chen, Rui; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tsurutani, Bruce; Li, Wen; Ni, Binbin; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI:

Radiation belt; Chorus wave; density duct; ducted region; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or with in situ EMIC wave observations from Van Allen Probes. The multi-event analysis shows that electron precipitation occurred in a broad region near dusk (16–23 MLT), mostly confined to 3.5–7.5 L- shells. Each precipitation event occurred on localized radial scales, on average ∼0.3 L. Most importantly, FIREBIRD-II recorded electron precipitation from ∼200–300 keV to the expected ∼MeV energies for most cases, suggesting that EMIC waves can efficiently scatter a wide energy range of electrons.

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

Published by: Geophysical Research Letters      Published on: 02/2021

YEAR: 2021     DOI:

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with energies of 10-100 eV. The results show that warm ion flux enhancements associated with the density cavities were observed more frequently for H+, then for He+ and the least frequently for O+. The occurrences of the associated flux enhancements were increased when considering only the cavities inside the plasmasphere. Possible mechanisms responsible for the observed warm ion flux enhancements and the role of density cavities on these ion flux enhancements are discussed.

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI:

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Global Magnetosphere Response to Solar Wind Dynamic Pressure Pulses During Northward IMF Using the Heliophysics System Observatory

Abstract We analyzed the magnetospheric global response to dynamic pressure pulses (DPPs) using the Heliophysics System Observatory (HSO) and ground magnetometers. During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed “cavity” and reacts to solar wind DPPs more simply than during southward IMF. In this study we use solar wind data collected by ACE and WIND together with magnetic field observations of Geotail, Cluster, THEMIS, MMS, Van Allen Probes, GOES missions, and ground magnetometer arrays to observe the magnetosphere (dayside, nightside, inner magnetosphere, magnetotail, magnetosheath, etc.) and ionosphere response simultaneously in several local time sectors and regions. A total of 37 events were selected during the period between February 2007 to December 2017. We examine the global response of each event and identify systematic behavior of the magnetosphere due to DPPs’ compression, such as MHD wave propagation, sudden impulses, and Ultra Low Frequency waves (ULF) in the Pc5 range. Our results confirm statistical studies with a more limited coverage that have been performed at different sectors and/or regions of the magnetosphere. We present observations of the different signatures generated in different regions that propagate through the magnetosphere. The signature of the tailward traveling DPP is observed to move at the same solar wind speed, and in superposition of other known magnetospheric perturbations. It is observed that the DPP also generates or increases the amplitude of Pc4-5 waves observed in the inner magnetosphere, while similar waves are observed on the ground. This article is protected by copyright. All rights reserved.

Vidal-Luengo, S.; Moldwin, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI:

Multi-satellite; Heliophysics System Observatory; Dynamic Pressure Pulse; Heliophysics; Magnetosphere; Van Allen Probes


Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic (MHD) magnetic field, backward tracing of O+ reveals that the structure is formed by ions with a long drift time from the plasma sheet during the magnetic storm main phase to the inner region with trajectories dominated by eastward drift motion, and the formation depends on the convection electric field model. The heavy ion dominance of the feature is explained by charge exchange losses along the long slow drift paths.

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI:

Van Allen Probes

Long-Term Dropout of Relativistic Electrons in the Outer Radiation Belt During Two Sequential Geomagnetic Storms

On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long-term dropout of MeV electrons during two sequential storms of similar magnitude under lightly disturbed solar wind conditions. Observations from low-altitude satellites show that the fluxes decreased first at higher L-shells and then gradually propagated inward. Moreover, the fluxes were almost completely lost and dropped to the background level at L > 5, while the fluxes at 4 < L < 5 were partly lost, as observed by RBSP and low-altitude satellites. Finally, observations show that on 5 February, only the fluxes at L > 5.5 recovered, while the fluxes at 4 < L < 5 did not return to the prestorm levels. These observations indicate that the loss and recovery processes developed first at higher L-shells. Phase space density (PSD) analysis shows that radial outward diffusion was the main reason for the dropout at higher L-shells. Regarding electron enhancement, stronger inward diffusion was accompanied by ultra-low-frequency (ULF) wave activities at higher L-shells, and chorus waves observed at outer L-shells provided conditions for relativistic electron flux recovery to the prestorm levels.

Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI:

Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes

Statistical Evidence for EMIC Wave Excitation Driven by Substorm Injection and Enhanced Solar Wind Pressure in the Earth s Magnetosphere: Two Different EMIC Wave Sources

Substorm injection and solar wind dynamic pressure have long been considered as two main drivers of electromagnetic ion cyclotron (EMIC) wave excitation, but clear observational evidence is still lacking. With Van Allen Probes data from 2012–2017, we have investigated the roles of the two EMIC wave drivers separately, by using time-modified AE+ and . Both the occurrence rate and magnetic amplitude of waves significantly increase with the enhancement of each index. During large AE+, EMIC waves are mainly generated in the dusk sector (16 ≤ MLT ≤ 20) and near the magnetic equator (|MLAT| < 10°). This is presumably due to substorm-injected protons drifting from midnight sector to the plasmaspheric bulge. While during large , EMIC waves mainly occur in the noon sector (9 ≤ MLT ≤ 15). But there exist higher-latitude (10° < |MLAT| < 20°) source regions besides equatorial source, possibly due to the minimum B regions. Our results provide strong observational support to existing generation mechanisms of EMIC waves in the Earth s magnetosphere.

Chen, Huayue; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 10/2020

YEAR: 2020     DOI:

EMIC wave; wave excitation; source region; substorm injection; solar wind dynamic pressure; Earth s magnetosphere; Van Allen Probes

Lower-Band “Monochromatic” Chorus Riser Subelement/Wave Packet Observations

Three lower-band (f < 0.5 fce) chorus riser elements detected in the dayside generation region were studied in detail using the Van Allen Probe data. Two subelements/wave packets within each riser were examined for their wave “frequency” constancy within seven consecutive wave cycles. The seven wave cycles contained the maximum amplitudes of the subelements/packets. Maximum variance B1 zero crossings were used for the identification of wave cycle start and stop times. It is found that the frequency is constant to within ~3\% (one standard deviation), with no evidence of upward frequency sweeping over the seven cycles. Continuous wavelet power spectra for the duration of the seven cycles confirm this conclusion. The implication is that a chorus riser element is composed of coherent approximately “monochromatic” steps instead of a gradual sweep in frequency over the whole element. There was no upward frequency stepping where the wave amplitude was the largest, contrary to the sideband theory prediction. It is shown that a chorus riser involves instability of cyclotron resonant energetic electrons from ~6 to ~40 keV at L = 5.8, that is, essentially the whole substorm electron energy spectrum. The above findings may have important consequences for possible wave generation mechanisms. Some new ideas for mechanisms are suggested in conclusion.

Tsurutani, Bruce; Chen, Rui; Gao, Xinliang; Lu, Quanming; Pickett, Jolene; Lakhina, Gurbax; Sen, Abhijit; Hajra, Rajkumar; Park, Sang; Falkowski, Barbara;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI:

chorus coherency; chorus subelement monochromaticity; a modified theory needed; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI:

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes


Effects of Solar Wind Plasma Flow and Interplanetary Magnetic Field on the Spatial Structure of Earth\textquoterights Radiation Belts

Based on the statistical data measured by Van Allen Probes from 2012 to 2016, we analyzed the effects of solar wind plasma flow and interplanetary magnetic field (IMF) on the spatial distribution of Earth\textquoterights radiation belt electrons (>100 keV). The statistical results indicate that the increases in solar wind plasma density and flow speed can exert different effects on the spatial structure of the radiation belts. The high solar wind plasma density (>6 cm-3)/flow pressure (>2.5 nPa) and a large southward IMF (Bz < -6 nT) usually appear in the front of high-speed solar wind streams (> 450 km/s), and they tend to narrow the outer radiation belt but broaden the slot region. In contrast, the increase in solar wind flow speed can broaden the outer radiation belt but narrows the slot region. When the solar wind speed exceeds 500 km/s, the outer radiation belt electrons can penetrate into the slot region (L < 3) and even enter the inner radiation belt (L < 2). The lower-energy electrons penetrate into the deeper (smaller-L) region than the higher-energy electrons.

Li, L.Y.; Yang, S.S.; Cao, J.B.; Yu, J.; Luo, X.Y.; Blake, J.B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA027284

Changes in The Spatial Structure of Earth\textquoterights Radiation Belts; Increase in Solar Wind Plasma Density; Increase in Solar Wind Plasma Flow Speed; Northward Interplanetary Magnetic Field; Southward interplanetary magnetic field; Van Allen Probes

Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves

Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth\textquoterights upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC-driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, while two Polar Operational Environmental Satellites (POES) observed proton precipitation nearby. Van Allen Probe A detected EMIC waves (~0.7\textendash2.0 nT) over the similar L shell extent of electron precipitation observed by FIREBIRD-II, albeit with a ~1.6 magnetic local time (MLT) difference. Although plasmaspheric hiss and magnetosonic waves were also observed, quasi-linear calculations indicate that EMIC waves were the most efficient in driving the electron precipitation. Quasi-linear theory predicts efficient precipitation at >0.8\textendash1 MeV (due to H-band EMIC waves), suggesting that other mechanisms are required to explain the observed subrelativistic electron precipitation.

Capannolo, L.; Li, W.; Ma, Q.; Chen, L.; Shen, X.-C.; Spence, H.; Sample, J.; Johnson, A.; Shumko, M.; Klumpar, D.; Redmon, R.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084202

electron precipitation; EMIC waves; FIREBIRD-II; quasi linear theory; Radiation belts; Van Allen Probes; wave particle interactions

Analyzing EMIC Waves in the Inner Magnetosphere Using Long-Term Van Allen Probes Observations

With 64-month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 <= L <= 6.5, in the noon sector. They typically have small θ (<30\textdegree) and weakly left-hand polarization but become more oblique and linearly polarized at larger magnetic latitudes or L-shells. With the increase of AE* index, their occurrence rate significantly increases in the noon sector, and their source region extends to dusk sector. He+ band waves usually occur in the predawn and morning sectors at 3 <= L <= 4.5. They generally have moderate θ (30 \textdegree - 40\textdegree) and left-hand polarization and also become more oblique and linearly polarized at larger latitudes or L-shells. There is a clear enhancement of occurrence rate and amplitude during active geomagnetic periods, especially in the dusk and evening sectors. O+ band waves mainly occur at 3 <= L <= 4 in the predawn sector. They have either very small θ (<20\textdegree) or very large θ (>50\textdegree), and typically linear or weakly right-hand polarization. During active periods, they mostly occur at the midnight sector and L < 3.5. As a valuable supplement to previous statistical studies, our result provides not only a more compresentive EMIC wave model for evaluating their effects on the radiation belt, but also detailed observational constraints on generation mechanisms of EMIC waves.

Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026965

A long-term statistical work; EMIC wave; inner magnetosphere; spatial distribution; Van Allen Probes; Van Allen Probes observation; Wave fundamental characters

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites

The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery phase, He+ band EMIC waves were observed in the ionosphere and magnetosphere. During the late recovery phase, H+ band EMIC waves emerged in response to enhanced earthward convection during substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a duration of less than 186 min from coordinated observations. The results could provide additional insights into the spatial characteristics and propagation features of EMIC waves during storm periods.

Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026299

EMIC wave; storm; substorm; Swarm; Van Allen Probes


The composition of plasma inside geostationary orbit based on Van Allen Probes observations

The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn-dusk asymmetry with ion pressures peaking at dusk and electron pressure peaking at dawn. In addition, ring current H+ with energies ranging from 50 keV up to several hundred keV is the dominant component of plasma pressure during both quiet (> 90\%) and active times (> 60\%), while Oxygen (O+) with 10 < E < 50 keV and electrons with 0.1 < E < 40 keV become important during active times contributing more than 25\% and 20\% on the nightside, respectively, while the Helium (He+) contribution is generally small. The results presented in this study provide a global picture of the equatorial plasma pressure distributions and the associated contributions from different species with different energy ranges, which advance our knowledge of wave generation and provide models with a systematic baseline of plasma composition.

Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025344

ion composition; plasma pressure; Plasmapause; Van Allen Probes

An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013

We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May \textendash 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during storm main phase since the maximum observable equatorial pitch-angle from RBSP is not larger than ~ 40\textdegree during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.

Bin Kang, Suk-; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024879

CIMI model; drift loss; dropout; magnetopause shadowing; pitch-angle distribution (PAD); RBSP; Van Allen Probes


Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Spatial Scale and Duration of One Microburst Region on 13 August 2015

Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electron measurements to determine the spatial and temporal evolution of a microburst region in the morning MLT sector on 13 August 2015. The microburst region is found to extend across at least four hours in local time in the morning sector, from 09:00 to 13:00 MLT, and from L of 5 out to 10. The microburst event lasts for nearly nine hours. Smaller scale structure is investigated using the dual AeroCube-6 CubeSats, and is found to be consistent with the spatial size of whistler mode chorus wave observations near the equatorial plane.

Anderson, B.; Shekhar, S.; Millan, R.; Crew, A.; Spence, H.; Klumpar, D.; Blake, J.; O\textquoterightBrien, T.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023752

Microbursts; Radiation Belt Dynamics; Van Allen Probes; whistler mode chorus waves

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s-1) aboard the two Van Allen Probes spacecraft\textemdash9 h (0800\textendash1200 UT and 1700\textendash2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430\textendash0900, and magnetic latitudes were ~15 and ~5\textdegree during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550\textendash650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 \textperiodcentered r2/r02), with the characteristic scale r0 around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

Transverse eV ion heating by random electric field fluctuations in the plasmasphere

Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2\textendash3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07\textendash0.2 eV/h for protons and 0.007\textendash0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti\~0.3Ti\~0.3 eV could potentially explain the observations.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Blum, L.;

Published by: Physics of Plasmas      Published on: 02/2017

YEAR: 2017     DOI: 10.1063/1.4976713

electric fields; Electrostatic Waves; protons; Van Allen Probes; Wave power; Whistler waves

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Blum, L.; Bonnell, J.; Agapitov, O.; Paulson, K.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes


Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblright with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from \~1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements

Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30\textendash60 s is observable during close conjunction events but is lost as spacecraft separations exceed ~1 Earth Radii.

Blum, L.; Agapitov, O.; Bonnell, J.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068799

coherence scales; EMIC waves; multipoint measurements; Van Allen Probes

On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave\textendashparticle interactions. We show that wave parameters, consistent with large-amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles $\theta _kB\gt 50^\circ $ and phase-speeds $v_\rm\Phi \geqslant c/9$. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons ($E\geqslant 100$ keV) on kinetic timescales, which is much faster than previously inferred.

Osmane, Adnane; , Lynn; Blum, Lauren; Pulkkinen, Tuija;

Published by: The Astrophysical Journal      Published on: 01/2016

YEAR: 2016     DOI: 10.3847/0004-637X/816/2/51

acceleration of particles; Earth; Plasmas; relativistic processes; solar\textendashterrestrial relations; Van Allen Probes; waves


\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes

Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6\textendash2.6, MLT = 9.1\textendash10.5, and MLAT = -2.4\textendash0.09\textdegree, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5\textendash0.7 keV, L = 3.6\textendash2.5, MLT = 9.1\textendash10.7, and MLAT = -2.4\textendash0.4\textdegree. Results from backward ion drift path tracings indicate that the trunks are likely due to 1) a gap in the nightside ion source or 2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021822

inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes

Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013

Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at the end of 18 January and again late on 19 January, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to determine when and where EMIC waves cause radiation belt electron precipitation. The conjugate measurements presented here provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss.

Blum, L.; Halford, A.; Millan, R.; Bonnell, J.; Goldstein, J.; Usanova, M.; Engebretson, M.; Ohnsted, M.; Reeves, G.; Singer, H.; Clilverd, M.; Li, X.;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL065245

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

Extreme geomagnetic disturbances due to shocks within CMEs

We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\textquoterights magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing.

Lugaz, N.; Farrugia, C.; Huang, C.-L.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015GL064530

coronal mass ejections; Geomagnetic storm; magnetopause; magnetosheath; shocks

Ecohydrologic role of solar radiation on landscape evolution

Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, Homero; Vivoni, Enrique; Bras, Rafael;

Published by: Water Resources Research      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/wrcr.v51.210.1002/2014WR016169

catchment evolution; ecohydrology; geomorphology; landscape evolution; solar radiation; vegetation dynamics

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes


Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. The coherence coefficient of rising and falling tones is extremely large (~1), while the coherence coefficient of hiss-like emissions is smaller but is still larger than 0.5. For all categories of whistler mode waves, the normalized bandwidth increases at larger L shells. Furthermore, the normalized bandwidth is positively correlated with local fpe/fce but is inversely correlated with the electron density. Interactions between radiation belt electrons and whistler mode waves have been widely described by quasi-linear diffusion theory. Our results suggest that although quasi-linear theory is not entirely applicable for modeling electron interactions with rising and falling tones due to their narrow bandwidth and high coherence coefficient, it is suitable to treat wave-particle interactions between electrons and low-amplitude hiss-like emissions. Moreover, the correlations between the normalized bandwidth of chorus waves (especially the discrete emissions) and other parameters may provide insights for the generation mechanism of chorus waves.

Gao, X.; Li, W.; Thorne, R.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020158

bandwidth; coherence coefficient; nonlinear; quasi-linear; THEMIS; whistler mode waves

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5\textendash9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the outer radiation belt boundary are found to be one to three orders of magnitude higher than values measured just inside the radiation belt. (2) There is indication that substorm activity leads to PSD increases inside L = 5.5 in less than 1 hr. (3) Evidence for progressive inward transport of enhanced PSDs is found. (4) Reductions and enhancements in the PSDs over L-shells from 3.5 to 6 are found to occur rapidly in ~2 \textendash 3 hrs. These results suggest that (1) continual replenishments are required to maintain high levels of PSD for electrons at these energies, and (2) inward radial transport of these electrons occurs in a fast time scale of a few hrs.

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes

A nonstorm time enhancement of relativistic electrons in the outer radiation belt

Despite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13\textendash14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes\textquoteright apogee, which suggest a very interesting scenario: wave-particle interactions causing a PSD peak at ~ L* = 5.5 from where the electrons are then rapidly transported radially inward. This letter demonstrates, for the first time in detail, that geomagnetic storms are not necessary for causing dramatic enhancements in the outer radiation belt.

Schiller, Quintin; Li, Xinlin; Blum, Lauren; Tu, Weichao; Turner, Drew; Blake, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058485

Van Allen Probes

One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)

The Colorado Student Space Weather Experiment is a 3-unit (10cm \texttimes 10cm \texttimes 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 \texttimes 780 km, 65\textdegree orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program. The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On September 13, 2013, CSSWE completed one year of on-orbit operations. In this talk we will discuss the issues encountered with designing and operating a cubesat in orbit. Data from the mission will be presented and discussed in the larger context of ionospheric and magnetospheric physics.

Palo, Scott; Gerhardt, David; Li, Xinlin; Blum, Lauren; Schiller, Quintin; Kohnert, Rick;

Published by:       Published on: 01/2014

YEAR: 2014     DOI: 10.1109/USNC-URSI-NRSM.2014.6928087

artificial satellites; atmospheric measuring apparatus; Ionosphere; Magnetic Storms; Magnetosphere; Van Allen Probes


The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18\textendash19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial features of precipitation bands for the first time. We estimate the net electron loss due to the precipitation bands and find that ~20 such events could empty the entire outer belt. This study suggests that precipitation bands play a critical role in radiation belt losses.

Blum, L.; Schiller, Q.; Li, X.; Millan, R.; Halford, A.; Woodger, L.;

Published by: Geophysical Research Letters      Published on: 11/2013

YEAR: 2013     DOI: 10.1002/2013GL058546

CubeSats; precipitation; Radiation belts; Van Allen Probes

First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms

Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65\textdegree) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10\textdegree) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the atmosphere, a major radiation belt loss process. REPTile, a miniaturized version of REPT, measures the fraction of the total electron population that has small enough equatorial pitch angles to reach the altitude of CSSWE, 480 km \texttimes 780 km, thus measuring the precipitating population as well as the trapped and quasi-trapped populations. These newly available measurements provide an unprecedented opportunity to investigate the source, loss, and energization processes that are responsible for the dynamic behavior of outer radiation belt electrons. The focus of this paper will be on the characteristics of relativistic electrons measured by REPTile during the October 2012 storms; also included are long-term measurements from the Solar Anomalous and Magnetospheric Particle Explorer to put this study into context.

Li, X.; Schiller, Q.; Blum, L.; Califf, S.; Zhao, H.; Tu, W.; Turner, D.; Gerhardt, D.; Palo, S.; Kanekal, S.; Baker, D.; Fennell, J.; Blake, J.; Looper, M.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/2013JA019342

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes