• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 4 entries in the Bibliography.

Showing entries from 1 through 4


Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic (MHD) magnetic field, backward tracing of O+ reveals that the structure is formed by ions with a long drift time from the plasma sheet during the magnetic storm main phase to the inner region with trajectories dominated by eastward drift motion, and the formation depends on the convection electric field model. The heavy ion dominance of the feature is explained by charge exchange losses along the long slow drift paths.

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI:

Van Allen Probes

Storm Time Plasma Pressure Inferred From Multimission Measurements and Its Validation Using Van Allen Probes Particle Data

The k-nearest-neighbor technique is used to mine a multimission magnetometer database for a subset of data points from time intervals that are similar to the storm state of the magnetosphere for a particular moment in time. These subsets of data are then used to fit an empirical magnetic field model. Performing this for each snapshot in time reconstructs the dynamic evolution of the magnetic and electric current density distributions during storms. However, because weaker storms occur more frequently than stronger storms, the reconstructions are biased toward them. We demonstrate that distance weighting the nearest-neighbors mitigates this issue while allowing a sufficient amount of data to be included in the fitting procedure to limit overfitting. Using this technique, we reconstruct the distribution of the magnetic field and electric currents and their evolution for two storms, the intense 17–19 March 2015 “Saint Patrick s Day” storm and a moderate storm occurring on 13–15 July 2013, from which the pressure distributions can be computed assuming isotropy and by integrating the steady-state force-balance equation. As the main phase of a storm progresses in time, the westward ring current density and pressure increases in the inner magnetosphere particularly on the nightside, becoming more symmetric as the recovery phase progresses. We validate the empirical pressure by comparing it to the observed pressures from the Van Allen Probes mission by summing over particle fluxes from all available energy channels and species.

Stephens, G.; Bingham, S.; Sitnov, M.; Gkioulidou, M.; Merkin, V.; Korth, H.; Tsyganenko, N.; Ukhorskiy, A;

Published by: Space Weather      Published on: 10/2020

YEAR: 2020     DOI:

storms; empirical geomagnetic field; ring current; data mining; eastward current; plasma pressure; Van Allen Probes


The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes


The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves