Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2021

A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere

Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radiation in Geospace (ERG) located 0.5 MLT eastward at a similar L shell also measured a gradual increase. The spatial scale was of the order of 1 RE. On top of that, MMS and Probe B measured BZ increases, and a decrease in one case, on a timescale of seconds, accompanied by large electric fields with amplitudes > several tens of mV/m. Spatial scale lengths were of the order of the ion inertial length and the ion gyroradius. The inertial term in the momentum equation and the Hall term in the generalized Ohm’s law were sometimes non-negligible. These small-scale variations are discussed in terms of the ballooning/interchange instability (BICI) and kinetic Alfvén waves among others. It is inferred that physics of multiple scales was involved in the dynamics of this dipolarization event. This article is protected by copyright. All rights reserved.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029294

Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes

Evidence of Alfvenic Poynting flux as the primary driver of auroral motion during a geomagnetic substorm

Abstract Geomagnetic substorms are major energy transfer events where energy stored in the Earths magnetotail is released into the ionosphere. Substorm phenomena, including auroral activities, earthward Poynting flux, magnetic field dipolarization, etc, have been extensively studied. However, the complex interplay among them is not fully understood. In a fortuitous event on June 07, 2013, the twin Van Allen Probes (separated by 0.4 hour in local time) observed bursts of earthward Alfvenic Poynting flux in the vicinity of the plasma sheet boundary layer (PSBL). The Poynting flux bursts correlate with enhancements of auroral brightness around the footpoints of both spacecraft. This indicates a temporal and spatial correlation between the auroral brightening and Poynting flux bursts, and that the auroral motion is directly linked to the perpendicular expansion of the Alfven wave. These observations suggest that the Alfvenic Poynting flux is a primary driver for the auroral electron acceleration. Around the time of auroral brightening, a dipolarization was seen to propagate more than 4 hours in local time during a 20 min period. The azimuthal phase speed of this dipolarization (2 deg/min) is too small to explain the azimuthal motion of the aurora (13.6 deg/min), but the dipolarization could be related to the generation of the Alfvenic Poynting flux through phase mixing at strong density gradients like those in the PSBL. This article is protected by copyright. All rights reserved.

Tian, S.; Colpitts, C.; Wygant, J.; Cattell, C.; Ferradas, C.; Igl, A.; Larsen, B.; Reeves, G.; Donovan, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029019

Poynting flux; auroral physics; discrete arc; Dipolarization; Alfven waves; Van Allen Probes

2018

Spatial Development of the Dipolarization Region in the Inner Magnetosphere

The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk-to-midnight sector than in the midnight-to-dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk-to-midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the westward expansion. Its velocity is estimated at 50 km/s (0.5 RE/min), comparable to the westward expansion velocity, but it is suggested that the earthward expansion slows down as the dipolarization region approaches Earth, and it eventually stops. This idea is consistent with the earthward reduction of the occurrence probability of dipolarization events. Whereas this earthward expansion is difficult to explain with the conventional wedge current system, it may be understood in terms of a current system with two wedges, one with the R1 polarity outside and the other with the R2 polarity closer to Earth. For such a current system the region of dipolarization is confined in radial distance between the two wedge currents, and it is considered to expand earthward as the R2-sense wedge moves earthward along with injected plasma.

Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Singer, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025443

Dipolarization; injection; inner magnetosphere; R1 and R2 currents; substorm current wedge; substorms; Van Allen Probes

2017

Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event

Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of \textquotedblleftdispersionless\textquotedblright injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth\textquoterights magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization front is the most penetrating. At geosynchronous orbit (6.6 RE), the electron distributions do not have a classic power law fit but instead a bump on tail centered on \~120 keV during dispersionless electron injections. However, electron distributions of injections associated with magnetic flux pileup in the magnetotail (13 RE) do not show such a signature. We surmise that an additional resonant acceleration occurs in between these locations. We relate the acceleration mechanism to the electron drift resonance with ultralow frequency waves localized in the inner magnetosphere.

Kronberg, E.; Grigorenko, E.; Turner, D.; Daly, P.; Khotyaintsev, Y.; Kozak, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023551

Acceleration; current wedge; Dipolarization; particle injections; substorm; ULF waves; Van Allen Probes

2016

Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L < 6.6

We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20\textendash50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1\textendash5 keV appears with a clear energy-dispersion signature only for O+, and (5) the energy-dispersed O+ flux enhancement appears in directions parallel or anti-parallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O+ ions at >20 keV. We conclude that O+ ions at L = 5.4\textendash6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5\textendash5.4, however, only the former acceleration is plausible. We also conclude that the field-aligned energy-dispersed O+ ions at 0.1\textendash5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.

e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022549

Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes

Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm

The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the BATS-R-US global magnetohydrodynamic (MHD) model linked with the Rice Convection Model (RCM). The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

Reiff, P.; Daou, A.; Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069154

Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes

2014

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the outer radiation belt boundary are found to be one to three orders of magnitude higher than values measured just inside the radiation belt. (2) There is indication that substorm activity leads to PSD increases inside L = 5.5 in less than 1 hr. (3) Evidence for progressive inward transport of enhanced PSDs is found. (4) Reductions and enhancements in the PSDs over L-shells from 3.5 to 6 are found to occur rapidly in ~2 \textendash 3 hrs. These results suggest that (1) continual replenishments are required to maintain high levels of PSD for electrons at these energies, and (2) inward radial transport of these electrons occurs in a fast time scale of a few hrs.

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes



  1