• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Rapid Precipitation of Relativistic Electron by EMIC Rising-Tone Emissions Observed by the Van Allen Probes

On 23 February 2014, Van Allen Probes sensors observed quite strong electromagnetic ion cyclotron (EMIC) waves in the outer dayside magnetosphere. The maximum amplitude was more than 14 nT, comparable to 7\% of the magnitude of the ambient magnetic field. The EMIC waves consisted of a series of coherent rising tone emissions. Rising tones are excited sporadically by energetic protons. At the same time, the probes detected drastic fluctuations in fluxes of MeV electrons. It was found that the electron fluxes decreased by more than 30\% during the 1 min following the observation of each EMIC rising tone emissions. Furthermore, it is concluded that the flux reduction is a nonadiabatic (irreversible) process since holes in the particle flux levels appear as drift echoes with energy dispersion. We examine the process of electron pitch angle scattering by nonlinear wave trapping due to anomalous cyclotron resonance with EMIC rising tone emissions. The energy range of precipitated electrons agrees with the presumed energy for the threshold amplitude for nonlinear wave trapping. This is the first report of rapid precipitation (<1 min) of relativistic electrons by EMIC rising tone emissions and their drift echoes in time observed by spacecraft.

Nakamura, S.; Omura, Y.; Kletzing, C.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: May-08-2020

YEAR: 2019     DOI: 10.1029/2019JA026772

EMIC waves; Magnetosphere; microburst; nonlinear; Radiation belt; Van Allen Probes; Wave-particle interaction


Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes