Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 58 entries in the Bibliography.


Showing entries from 51 through 58


2013

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth\textquoterights magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1\texttimes5.8 RE, 10o). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from \~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.

Mauk, B.; Fox, N.; Kanekal, S.; Kessel, R.; Sibeck, D.; UKHORSKIY, A;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9908-y

RBSP; Van Allen Probes

First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms

Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65\textdegree) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10\textdegree) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the atmosphere, a major radiation belt loss process. REPTile, a miniaturized version of REPT, measures the fraction of the total electron population that has small enough equatorial pitch angles to reach the altitude of CSSWE, 480 km \texttimes 780 km, thus measuring the precipitating population as well as the trapped and quasi-trapped populations. These newly available measurements provide an unprecedented opportunity to investigate the source, loss, and energization processes that are responsible for the dynamic behavior of outer radiation belt electrons. The focus of this paper will be on the characteristics of relativistic electrons measured by REPTile during the October 2012 storms; also included are long-term measurements from the Solar Anomalous and Magnetospheric Particle Explorer to put this study into context.

Li, X.; Schiller, Q.; Blum, L.; Califf, S.; Zhao, H.; Tu, W.; Turner, D.; Gerhardt, D.; Palo, S.; Kanekal, S.; Baker, D.; Fennell, J.; Blake, J.; Looper, M.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/2013JA019342

RBSP; Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

2006

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

2005

Wave acceleration of electrons in the Van Allen radiation belts

The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth\textquoterights magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

Horne, Richard; Thorne, Richard; Shprits, Yuri; Meredith, Nigel; Glauert, Sarah; Smith, Andy; Kanekal, Shrikanth; Baker, Daniel; Engebretson, Mark; Posch, Jennifer; Spasojevic, Maria; Inan, Umran; Pickett, Jolene; Decreau, Pierrette;

Published by: Nature      Published on: 09/2005

YEAR: 2005     DOI: 10.1038/nature03939

Local Acceleration due to Wave-Particle Interaction

2004

An extreme distortion of the Van Allen belt arising from the \textquoteleftHallowe\textquoterighten\textquoteright solar storm in 2003

The Earth\textquoterights radiation belts\textemdashalso known as the Van Allen belts1\textemdashcontain high-energy electrons trapped on magnetic field lines2, 3. The centre of the outer belt is usually 20,000\textendash25,000 km from Earth. The region between the belts is normally devoid of particles2, 3, 4, and is accordingly favoured as a location for spacecraft operation because of the benign environment5. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the \textquoteleftHallowe\textquoterighten storm\textquoteright of 2003. From 1 to 10 November, the outer belt had its centre only ~10,000 km from Earth\textquoterights equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire magnetosphere implies surprisingly powerful acceleration and loss processes deep within the magnetosphere.

Baker, D.; Kanekal, S.; Li, X.; Monk, S.; Goldstein, J.; Burch, J.;

Published by: Nature      Published on: 12/2004

YEAR: 2004     DOI: 10.1038/nature03116

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1997

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses



  1      2