Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 57 entries in the Bibliography.


Showing entries from 51 through 57


2014

Nonlinear Electric Field Structures in the Inner Magnetosphere

Van Allen Probes observations are presented which demonstrate the presence of nonlinear electric field structures in the inner terrestrial magnetosphere (< 6 RE). A range of structures are observed, including phase space holes and double layers.These structures are observed over several Earth radii in radial distance and over a wide range of magnetic local times. They are observed in the dusk, midnight, and dawn sectors, with the highest concentration pre-midnight. Some nonlinear electric field structures are observed to coincide with dipolarizations of the magnetic field and increases in electron energy flux for energies between 1 keV and 30 keV. Nonlinear electric field structures possess isolated impulsive electric fields, often with a significant component parallel to the ambient magnetic field, providing a mechanism for non-adiabatic wave-particle interactions in the inner magnetosphere.

Malaspina, D.; Andersson, L.; Ergun, R.; Wygant, J.; Bonnell, J; Kletzing, C.; Reeves, G.; Skoug, R.; Larsen, B.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061109

Van Allen Probes

Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013

We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 \textpm 0.01, 0.15 \textpm 0.02, and 0.07 \textpm 0.02 during the three wave events, respectively. On Van Allen Probe-B, this difference never exceeds 0. Compared to linear theory (Σh > Sh), the waves are only excited for elevated thresholds.

Zhang, J.-C.; Saikin, A.; Kistler, L.; Smith, C.; Spence, H.; Mouikis, C.; Torbert, R.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Kurth, W.; Kletzing, C.; Allen, R.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/2014GL060621

Van Allen Probes

Van Allen Probes observations of direct wave-particle interactions

Quasiperiodic increases, or \textquotedblleftbursts,\textquotedblright of 17\textendash26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75\textendash80\textdegree, while fluxes at 90\textdegree and <60\textdegree remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15\textendash35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfv\ en boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time.

Fennell, J.; Roeder, J.; Kurth, W.; Henderson, M.; Larsen, B.; Hospodarsky, G.; Wygant, J.; Claudepierre, J.; Blake, J.; Spence, H.; Clemmons, J.; Funsten, H.; Kletzing, C.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL059165

Van Allen Probes

The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm

We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convection electric field, are necessary to develop a strong ring current. Comparisons with Van Allen Probes observations show that our model reasonably well captures dispersed electron injections and the global Dst index.

Yu, Yiqun; Jordanova, Vania; Welling, Dan; Larsen, Brian; Claudepierre, Seth; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059322

ring current dynamics; self-consistent treatment of fields and plasma; Substorm Injections; Van Allen Probes

2013

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes



  1      2