Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 14 entries in the Bibliography.


Showing entries from 1 through 14


2020

The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters

Rapid radiation belt recovery following storm time depletion involves local acceleration of multi-MeV electrons in nonlinear interactions with VLF chorus waves. Previous studies of an apparent impenetrable barrier at L ~ 2.8 focused on diffusion and precipitation loss mechanisms for an explanation of the sharp reduction of multi-MeV electron fluxes earthward of L ~ 3. Van Allen Probes observations for cases when the plasmasphere is contracted earthward of L ~ 3 indicate that strong coherent signals from VLF transmitters can play significant roles in the suppression of nonlinear chorus wave growth earthward of L ~ 3. As a result, local nonlinear acceleration of hundreds of keV electrons to MeV energies does not occur in this region. During the recovery of the outer radiation belt when the plasmasphere is significantly contracted, the suppression of chorus wave growth and local acceleration by the action of the transmitter waves at the outer edge of the VLF bubble contributes to the sharp inner edge of the new MeV electron population and the formation of the impenetrable barrier at L ~ 2.8.

Foster, John; Erickson, Philip; Omura, Yoshiharu; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027913

Radiation belt; Plasmapause; VLF transmitters; wave-particle interactions; Electron acceleration; nonlinear VLF chorus; Van Allen Probes

2019

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

2017

Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV\textendash200 keV in resonant interactions with a single VLF rising tone on a time scale of 10\textendash100 ms.

Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023429

nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions

2016

Van Allen Probes Observations of Prompt MeV Radiation Belt Electron Acceleration in Non-Linear Interactions with VLF Chorus

Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of non-linear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy 100s keV - 3 MeV can be accelerated by 50 keV - 200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 msec.

Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023429

nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave particle interactions

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm

Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF transmitter signals extend beyond the eroded plasmapause, electron loss processes set up near the outer extent of the VLF bubble create an earthward limit to the region of local acceleration near L = 2.8 as MeV electrons are scattered into the atmospheric loss cone.

Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022509

barrier; Plasmapause; storm; Van Allen Probes; VLF

O + Ion Conic and Plasma Sheet Dynamics Observed by Van Allen Probe Satellites during the 1 June 2013 Magnetic Storm

The Van Allen Probe satellites were near apogee in the late evening local time sector during the 1 June 2013 magnetic storm\textquoterights main phase. About an hour after crossing the ring current\textquoterights \textquotedblleftnose structure\textquotedblright into the plasma sheet, the satellites encountered a quasi-periodic sequence of 0.08 - 3 keV O+ ions. Pitch angle distributions of this population consistently peaked nearly anti-parallel to the local magnetic field. We interpret this population as O+ conics originating in the northern ionosphere. Sequences began as fairly steady state conic fluxes with energies in the ~ 80 to 100 eV range. Over about a half hour build-up phase, O+ energies peaked near 1 keV. During subsequent release phases lasting ~ 20 minutes, O+ energies returned to low-energy starting points. We argue these observations reflect repeated formations and dissolutions of downward, magnetically aligned electric fields (ε||) layers trapping O+ conics between mirror points within heating layers below and electrostatic barriers above [Gorney et al., 1985]. Nearly identical variations were observed at the locations of both satellites during 9 of these 13 conic cycles. Phase differences between cycles were observed at both spacecraft during the remaining events. Most \textquotedblleftbuild-up\textquotedblright to \textquotedblleftrelease\textquotedblright phase transitions coincided with AL index minima. However, in situ magnetometer measurements indicate only weak dipolarizations of tail-like magnetic fields. The lack of field-aligned reflected O+ and tail-like magnetic fields suggest that both ionospheres may be active. However, southern hemisphere origin conics cannot be observed since they would be isotropized and accelerated during neutral sheet crossings.

Burke, W.; Erickson, P.; Yang, J.; Foster, J.; Wygant, J.; Reeves, G.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA021795

oxygen ion conics; plasma sheet dynamics; Van Allen Probes

2015

Shock-Induced Prompt Relativistic Electron Acceleration In the Inner Magnetosphere

We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L=3 and L=5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3 \textendash 4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse— stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit identification of the source population of the energized electrons. Observations detail the promptness (<20 min), energy range (1.5-4.5 MeV), energy increase (~500 keV), and spatial extent (L*~3.5-4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event.

Foster, J.; Wygant, J.; Hudson, M.; Boyd, A.; Baker, D.; Erickson, P.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020642

Van Allen Probes

2014

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere

We present first results from a study of the plasma instability mechanism responsible for the small-scale (\~10 m) ionospheric density irregularities commonly observed by the Super Dual Auroral Radar Network (SuperDARN) HF radars in the vicinity of Sub Auroral Polarization Streams (SAPS) during periods of geomagnetic disturbance. A focus is placed on the mid-latitude region of the ionosphere over North America where recent expansion of the SuperDARN network allows for extensive direct comparisons with total electron content (TEC) measurements from a dense network of ground-based GPS receivers. The TEC observations indicate that high-speed SAPS channels and the associated small-scale irregularities are typically located within the mid-latitude ionospheric trough. The Millstone Hill Incoherent Scatter Radar (ISR), operating in campaign mode in support of the NASA Van Allen Probes mission, provided measurements of F region ion/electron density, velocity, and temperature suitable for identifying potential mechanisms of plasma instability during a SAPS event that extended over 12 hours of magnetic local time (MLT) on 2 February 2013. Previous work has indicated that the density gradients associated with the poleward wall of the mid-latitude trough can produce small-scale irregularities due to the gradient drift instability during quiet periods by cascade from larger-scale structures. In this study we demonstrate that the gradient drift instability is a viable source for the direct generation of the small-scale irregularities observed by SuperDARN radars in the mid-latitude ionosphere during geomagnetically disturbed conditions.

Thomas, Evan; Yan, Jingye; Zhang, Jiaojiao; Baker, Joseph; Ruohoniemi, Michael; Hoskawa, Keisuke; Erickson, Philip; Coster, Anthea; Foster, John;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929853

Ionosphere; Plasmas; SUPERDARN; Van Allen Probes

Initial observations of plasma waves in the sub-auroral polarization stream with the Van Allen Probes

The Sub-Auroral Polarization Stream (SAPS) is a geospace boundary layer phenomenon associated with the interaction of the warm plasma of the magnetospheric ring current with the cold ions and electrons of the outer plasmasphere [1]. Driven by ring current enhancements during magnetospheric disturbances, SAPS location, intensity, and characteristics are greatly influenced by the underlying ionosphere. Strong M-I coupling by means of field-aligned currents creates a high-speed (>1000 m/s) westward plasma flow channel in the ionosphere at pre-midnight/post-noon local times which is readily observable by incoherent scatter [2] and HF radars and in plasma drift observations by low-altitude spacecraft (e.g. DMSP). The fast ionospheric flows generate E-region irregularities providing for additional diagnostics using coherent backscatter techniques [3]. SAPS plays a significant role in the redistribution of cold plasma through the geospace system at both ionospheric and magnetospheric heights. Where the SAPS flow channel overlaps the mid-latitude ionosphere and outer plasmasphere, streams of cold plasma are carried westward and sunward as plumes of storm enhanced density (SED) in the ionosphere and as plasmasphere erosion plumes at high altitude. Ground-based maps of GPS total electron content (TEC) serve to visualize the spatial extent and evolution of the SAPS and SED. Mapping these features to magnetospheric altitudes along magnetic field lines permits direct intercomparison with in situ spacecraft observations. The recently launched Van Allen Probes twin satellites (RBSP-A \& RBSP-B) are in near-equatorial orbits well suited for studies of the SAPS and related phenomena at the apex of field lines threading the plasmasphere boundary layer. Simultaneous near magnetic field aligned observations of SAPS at DMSP altitude (\~800 km) and by RBSP-A at \~20,000 km show close correspondence of SAPS location and characteristics between the ionosphere and- magnetosphere. In highly elliptical orbits with apogee near 5.5 Re, the RBSP spacecraft often spend hours at a time skimming the outer plasmasphere within the SAPS region. A great variety of wave phenomena are observed. Here we describe long-duration large amplitude (+/- 5 mV/m) electric field oscillations with 3 min\textendash5 min period seen in the magnetospheric equatorial plane within the SAPS/erosion plume region.

Foster, John; Erickson, Philip;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929852

Ionosphere; Magnetosphere; Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at \~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons [1]. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. Chorus is excited following the injection of low-energy (1\textendash30 keV) plasma sheet electrons into the inner magnetosphere [2]. During the 17 March substorm injection, cold plasma that had circulated into the nightside magnetosphere from the dayside ionosphere-plasmasphere contributed to an energetic (50 keV) electron population involved in chorus-mode wave amplification [3]. The high-energy tail (>100 keV) of the injected electrons and the intense VLF waves provide a seed population and energy source for subsequent radiation belt energization. The observed electron flux behavior is striking in its large increases over short intervals. As seen by RBSP-A at L* \~ 4.5 highly relativistic (>2MeV) electron fluxes increased immediately at the time of the substorm injection and strong chorus enhancement. At RBSP-B, at apogee at substorm onset, observed in the \~5 h separation between L* = 4.0 crossings, 3.60 MeV highly relativistic electron fluxes increased by a factor of 56, while 4.50 MeV flux increased by an even larger factor of 95. The 17 March multipoint observations indicate the significant role that substorm processes can play in creating a seed population of 100 keV electrons and VLF chorus wave enhancements that can lead to a prompt energization of relativistic and highly relativistic electrons in the region outside the plasm- pause.

Foster, John; Erickson, Philip;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929876

Magnetic flux; Magnetosphere; Van Allen Belts; Van Allen Probes

Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 \textpm 0.5). This reveals graphically that both \textquotedblleftcompeting\textquotedblright mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL058942

Van Allen Probes

Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere

Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ -130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m-2 s-1 erosion flux, while DMSP F-18 observed ~2E13 m-2 s-1 sunward flux. We find close similarities at high and low altitudes between the erosion plume in both invariant latitude spatial extent and plasma characteristics.

Foster, J.; Erickson, P.; Coster, A.; Thaller, S.; Tao, J.; Wygant, J.; Bonnell, J;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059124

Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased >90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere.

Foster, J.; Erickson, P.; Baker, D.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Reeves, G.; Thaller, S.; Spence, H.; Shprits, Y; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058438

Van Allen Probes



  1