Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 3001 through 3050


2015

Shock-Induced Prompt Relativistic Electron Acceleration In the Inner Magnetosphere

We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L=3 and L=5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3 \textendash 4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse— stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit identification of the source population of the energized electrons. Observations detail the promptness (<20 min), energy range (1.5-4.5 MeV), energy increase (~500 keV), and spatial extent (L*~3.5-4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event.

Foster, J.; Wygant, J.; Hudson, M.; Boyd, A.; Baker, D.; Erickson, P.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020642

Van Allen Probes

Shock-Induced Prompt Relativistic Electron Acceleration In the Inner Magnetosphere

We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L=3 and L=5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3 \textendash 4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse— stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit identification of the source population of the energized electrons. Observations detail the promptness (<20 min), energy range (1.5-4.5 MeV), energy increase (~500 keV), and spatial extent (L*~3.5-4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event.

Foster, J.; Wygant, J.; Hudson, M.; Boyd, A.; Baker, D.; Erickson, P.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020642

Van Allen Probes

Shock-Induced Prompt Relativistic Electron Acceleration In the Inner Magnetosphere

We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L=3 and L=5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3 \textendash 4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse— stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit identification of the source population of the energized electrons. Observations detail the promptness (<20 min), energy range (1.5-4.5 MeV), energy increase (~500 keV), and spatial extent (L*~3.5-4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event.

Foster, J.; Wygant, J.; Hudson, M.; Boyd, A.; Baker, D.; Erickson, P.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020642

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave\textendashparticle interactions in the pre-midnight inner magnetosphere

We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

Korotova, G.; Sibeck, D.; Tahakashi, K.; Dai, L.; Spence, H.; Kletzing, C.; Wygant, J.; Manweiler, J.; Moya, P.; Hwang, K.-J.; Redmon, R.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-955-2015

inner magnetosphere; Van Allen Probes

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes

The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission, but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases there is not a clear signature of the upper hybrid band and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

Kurth, W.; De Pascuale, S.; Faden, J.; Kletzing, C.; Hospodarsky, G.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020857

Electron density; Upper hybrid resonance; Van Allen Probes

Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes

The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission, but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases there is not a clear signature of the upper hybrid band and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

Kurth, W.; De Pascuale, S.; Faden, J.; Kletzing, C.; Hospodarsky, G.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020857

Electron density; Upper hybrid resonance; Van Allen Probes

Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes

The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission, but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases there is not a clear signature of the upper hybrid band and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

Kurth, W.; De Pascuale, S.; Faden, J.; Kletzing, C.; Hospodarsky, G.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020857

Electron density; Upper hybrid resonance; Van Allen Probes

Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes

The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission, but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases there is not a clear signature of the upper hybrid band and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

Kurth, W.; De Pascuale, S.; Faden, J.; Kletzing, C.; Hospodarsky, G.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020857

Electron density; Upper hybrid resonance; Van Allen Probes

Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents

The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A similar pattern coined \textquoteleftbanana current\textquoteright was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming \textquoterightbanana currents\textquoteright. Near Sym-H minimum, the \textquoterightbanana current\textquoteright is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

Stephens, G.; Sitnov, M.; Ukhorskiy, A; Roelof, E.; Tsyganenko, N.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2015JA021700

eastward current; empirical geomagnetic field; magnetic storm; ring current; Van Allen Probes

Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents

The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A similar pattern coined \textquoteleftbanana current\textquoteright was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming \textquoterightbanana currents\textquoteright. Near Sym-H minimum, the \textquoterightbanana current\textquoteright is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

Stephens, G.; Sitnov, M.; Ukhorskiy, A; Roelof, E.; Tsyganenko, N.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2015JA021700

eastward current; empirical geomagnetic field; magnetic storm; ring current; Van Allen Probes

Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents

The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A similar pattern coined \textquoteleftbanana current\textquoteright was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming \textquoterightbanana currents\textquoteright. Near Sym-H minimum, the \textquoterightbanana current\textquoteright is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

Stephens, G.; Sitnov, M.; Ukhorskiy, A; Roelof, E.; Tsyganenko, N.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2015JA021700

eastward current; empirical geomagnetic field; magnetic storm; ring current; Van Allen Probes

Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents

The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A similar pattern coined \textquoteleftbanana current\textquoteright was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming \textquoterightbanana currents\textquoteright. Near Sym-H minimum, the \textquoterightbanana current\textquoteright is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

Stephens, G.; Sitnov, M.; Ukhorskiy, A; Roelof, E.; Tsyganenko, N.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2015JA021700

eastward current; empirical geomagnetic field; magnetic storm; ring current; Van Allen Probes

2014

Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode

Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9\textendash11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce the dispersive features, but not the quantitative details. The cause for this phenomena remains to be identified.

Boardsen, S.; Hospodarsky, G.; Kletzing, C.; Pfaff, R.; Kurth, W.; Wygant, J.; MacDonald, E.;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062020

Fast Magnetosonic Waves; Inner Dayside Magnetosphere; Periodic-Dispersive Features; Van Allen Probes

Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode

Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9\textendash11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce the dispersive features, but not the quantitative details. The cause for this phenomena remains to be identified.

Boardsen, S.; Hospodarsky, G.; Kletzing, C.; Pfaff, R.; Kurth, W.; Wygant, J.; MacDonald, E.;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062020

Fast Magnetosonic Waves; Inner Dayside Magnetosphere; Periodic-Dispersive Features; Van Allen Probes

Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

The activity and radial dependence of anomalous diffusion by pitch-angle scattering on split magnetic drift shells

Asymmetries in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle\textquoterights motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during quiet to moderate geomagnetic activity and, it is significant at 0.5 MeV. Cross diffusion involving the radial invariant can exceed the geometric mean of the corresponding pure diffusion coefficients at 0.1 MeV, and that such cross diffusion is significant even at 0.5-1 MeV. At 1 MeV, cross diffusion is often significant. The highest radial distances and magnetic activity levels in our study do not always exhibit as much significant anomalous diffusion as moderate radial distances and activity levels. This can be explained by (a) stronger dependence of conventional diffusion on magnetic activity and radius, and (b) strongest drift shell splitting at moderate magnetic activity. Simulation codes that neglect the possibility for cross terms will likely systematically underperform, especially for 0.1-0.5 MeV electrons, for much of the outer zone for quiet to moderate levels of magnetic activity.

O\textquoterightBrien, T.P.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020422

Diffusion; Drift shell splitting; Radiation belt

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020373

multispacecraft observation; Van Allen Probes; plasmasphere; ULF waves

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020373

multispacecraft observation; Van Allen Probes; plasmasphere; ULF waves

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020373

multispacecraft observation; Van Allen Probes; plasmasphere; ULF waves

Fine structure of plasmaspheric hiss

Plasmaspheric hiss has been widely regarded as a broadband, structureless, incoherent emission. In this study, by examining burst-mode vector waveform data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument on the Van Allen Probes mission, we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. Our study comprises the analysis of two one-hour samples within which a total of 8 one-second samples were analyzed. By means of waveform analysis on two samples we identify typical amplitudes, phase profiles, and sweep rates of the rising and falling tone elements. The exciting new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

Summers, Danny; Omura, Yoshiharu; Nakamura, Satoko; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020437

Plasmaspheric Hiss; Van Allen Probes; whistler mode waves

Fine structure of plasmaspheric hiss

Plasmaspheric hiss has been widely regarded as a broadband, structureless, incoherent emission. In this study, by examining burst-mode vector waveform data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument on the Van Allen Probes mission, we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. Our study comprises the analysis of two one-hour samples within which a total of 8 one-second samples were analyzed. By means of waveform analysis on two samples we identify typical amplitudes, phase profiles, and sweep rates of the rising and falling tone elements. The exciting new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

Summers, Danny; Omura, Yoshiharu; Nakamura, Satoko; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020437

Plasmaspheric Hiss; Van Allen Probes; whistler mode waves

Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062273

BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes

Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062273

BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes



  59      60      61      62      63      64