Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 2801 through 2850


2015

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

What frequencies of standing surface waves can the subsolar magnetopause support?

It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle\textquoterights worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous estimates and indirect observational evidence for such standing surface waves of the subsolar magnetopause. However, the distributions exhibit significant spread (of order \textpm0.3 mHz) demonstrating that KS mode frequencies, especially higher harmonics, should vary considerably depending on the solar wind conditions. The implications of such large spread on observational statistics are discussed. The subsolar magnetopause eigenfrequencies are found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the possible occurrence of KS modes is shown to be controlled by the dipole tilt angle.

Archer, M.; Plaschke, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020545

magnetopause; magnetosheath; Magnetosphere; Ulf; waves

What frequencies of standing surface waves can the subsolar magnetopause support?

It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle\textquoterights worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous estimates and indirect observational evidence for such standing surface waves of the subsolar magnetopause. However, the distributions exhibit significant spread (of order \textpm0.3 mHz) demonstrating that KS mode frequencies, especially higher harmonics, should vary considerably depending on the solar wind conditions. The implications of such large spread on observational statistics are discussed. The subsolar magnetopause eigenfrequencies are found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the possible occurrence of KS modes is shown to be controlled by the dipole tilt angle.

Archer, M.; Plaschke, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020545

magnetopause; magnetosheath; Magnetosphere; Ulf; waves

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth\textquoterights magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth\textquoterights ring current and provides a realistic modeling of the Earth\textquoterights magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (\~1 MeV) and ring current (\~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth\textquoterights magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

Zhao, Lei; Yu, Yiqun; Delzanno, Gian; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020858

diffusion coefficients; Radiation belt; ring current

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements

In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an additional loss mechanism is operational and efficient for these high energies. The most likely mechanism for explaining the observed loss at ultra-relativistic energies is scattering by the Electro-Magnetic Ion Cyclotron waves.

Drozdov, A; Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020637

EMIC waves; Long-term simulation; Van Allen Probes; VERB code

Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements

In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an additional loss mechanism is operational and efficient for these high energies. The most likely mechanism for explaining the observed loss at ultra-relativistic energies is scattering by the Electro-Magnetic Ion Cyclotron waves.

Drozdov, A; Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020637

EMIC waves; Long-term simulation; Van Allen Probes; VERB code

Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements

In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an additional loss mechanism is operational and efficient for these high energies. The most likely mechanism for explaining the observed loss at ultra-relativistic energies is scattering by the Electro-Magnetic Ion Cyclotron waves.

Drozdov, A; Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020637

EMIC waves; Long-term simulation; Van Allen Probes; VERB code

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

High-energy radiation belt electrons from CRAND

A calculation of the inner radiation belt electron source from cosmic ray albedo neutron decay (CRAND) is described. High-energy electrons are included by Lorentz-transforming the β decay spectrum from the neutron rest frame to the Earth\textquoterights rest frame and combining with the known high-energy albedo neutron energy spectrum. Balancing the electron source with energy loss to atmospheric neutral atoms and plasma, and with a decay lifetime representative of plasma wave scattering, then provides an estimate of trapped electron intensity. It is well below measured values for low energies, confirming that CRAND is not a significant source of those trapped electrons. For kinetic energies above the maximum β decay energy (E > 0.8 MeV) a power law energy spectrum \~E-4 is predicted. For L = 1.5 and inline image MeV the computed omnidirectional trapped electron intensity exceeds an extrapolation of the measured low-energy exponential energy spectrum.

Selesnick, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020963

inner radiation; electron source from cosmic ray albedo neutron decay

Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001\textendash2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.

emec, F.; Santolik, O.; a, Hrb\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020814

equatorial noise; magnetosonic waves

Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001\textendash2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.

emec, F.; Santolik, O.; a, Hrb\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020814

equatorial noise; magnetosonic waves

Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the precipitating electron flux magnitudes from the observed amplitude disturbances, allowing for solar cycle changes in the ambient D region and dynamic variations in the EEP energy spectra. Our method performs well during the summer months when the daylit ionosphere is most stable but fails during the winter. From the summer observations, we have obtained 693 days worth of hourly EEP flux magnitudes over the 2004\textendash2013 period. These AARDDVARK-based fluxes agree well with independent satellite precipitation measurements during high-intensity events. However, our method of EEP detection is 10\textendash50 times more sensitive to low flux levels than the satellite measurements. Our EEP variations also show good agreement with the variation in lower band chorus wave powers, providing some confidence that chorus is the primary driver for the outer belt precipitation we are monitoring.

Neal, Jason; Rodger, Craig; Clilverd, Mark; Thomson, Neil; Raita, Tero; Ulich, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020689

AARDDVARK network; electron precipitation; Radiation belts; subionospheric VLF propagation

Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the precipitating electron flux magnitudes from the observed amplitude disturbances, allowing for solar cycle changes in the ambient D region and dynamic variations in the EEP energy spectra. Our method performs well during the summer months when the daylit ionosphere is most stable but fails during the winter. From the summer observations, we have obtained 693 days worth of hourly EEP flux magnitudes over the 2004\textendash2013 period. These AARDDVARK-based fluxes agree well with independent satellite precipitation measurements during high-intensity events. However, our method of EEP detection is 10\textendash50 times more sensitive to low flux levels than the satellite measurements. Our EEP variations also show good agreement with the variation in lower band chorus wave powers, providing some confidence that chorus is the primary driver for the outer belt precipitation we are monitoring.

Neal, Jason; Rodger, Craig; Clilverd, Mark; Thomson, Neil; Raita, Tero; Ulich, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020689

AARDDVARK network; electron precipitation; Radiation belts; subionospheric VLF propagation

Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the precipitating electron flux magnitudes from the observed amplitude disturbances, allowing for solar cycle changes in the ambient D region and dynamic variations in the EEP energy spectra. Our method performs well during the summer months when the daylit ionosphere is most stable but fails during the winter. From the summer observations, we have obtained 693 days worth of hourly EEP flux magnitudes over the 2004\textendash2013 period. These AARDDVARK-based fluxes agree well with independent satellite precipitation measurements during high-intensity events. However, our method of EEP detection is 10\textendash50 times more sensitive to low flux levels than the satellite measurements. Our EEP variations also show good agreement with the variation in lower band chorus wave powers, providing some confidence that chorus is the primary driver for the outer belt precipitation we are monitoring.

Neal, Jason; Rodger, Craig; Clilverd, Mark; Thomson, Neil; Raita, Tero; Ulich, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020689

AARDDVARK network; electron precipitation; Radiation belts; subionospheric VLF propagation

One- and two-dimensional hybrid simulations of whistler mode waves in a dipole field

We simulate whistler mode waves using a hybrid code. There are four species in the simulations, hot electrons initialized with a bi-Maxwellian distribution with temperature in the direction perpendicular to background magnetic field greater than that in the parallel direction, warm isotropic electrons, cold inertialess fluid electrons, and protons as an immobile background. The density of the hot population is a small fraction of the total plasma density. Comparison between the dispersion relation of our model and other dispersion relations shows that our model is more accurate for lower frequency whistlers than for higher frequency whistlers. Simulations in 2-D Cartesian coordinates agree very well with those using a full dynamics code. In the 1-D simulations along the dipole magnetic field, the predicted frequency and wave number are observed. Rising tones are observed in the one-fourteenth scale simulations that have larger than realistic magnetic field spatial inhomogeneity. However, in the full-scale 1-D simulation in a dipole field, the waves are more broadband and do not exhibit rising tones. In the 2-D simulations in a meridional plane, the waves are generated with propagation approximately parallel to the background magnetic field. However, the wavefronts become oblique as they propagate to higher latitudes. Simulations with different plasma density profiles across L shell are performed to study the effect of the background density on whistler propagation.

Wu, S.; Denton, R.; Liu, K.; Hudson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020736

hybrid simulation; particle-in-cell simulation; plasma waves; Whistler waves

Postmidnight depletion of the high-energy tail of the quiet plasmasphere

The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high-energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high-energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5\% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1\textendash4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the postmidnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes.

Sarno-Smith, Lois; Liemohn, Michael; Katus, Roxanne; Skoug, Ruth; Larsen, Brian; Thomsen, Michelle; Wygant, John; Moldwin, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020682

ion composition; Ionosphere; plasmasphere; postmidnight; quiet time magnetosphere; Van Allen Probes

Postmidnight depletion of the high-energy tail of the quiet plasmasphere

The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high-energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high-energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5\% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1\textendash4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the postmidnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes.

Sarno-Smith, Lois; Liemohn, Michael; Katus, Roxanne; Skoug, Ruth; Larsen, Brian; Thomsen, Michelle; Wygant, John; Moldwin, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020682

ion composition; Ionosphere; plasmasphere; postmidnight; quiet time magnetosphere; Van Allen Probes

Postmidnight depletion of the high-energy tail of the quiet plasmasphere

The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high-energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high-energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5\% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1\textendash4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the postmidnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes.

Sarno-Smith, Lois; Liemohn, Michael; Katus, Roxanne; Skoug, Ruth; Larsen, Brian; Thomsen, Michelle; Wygant, John; Moldwin, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020682

ion composition; Ionosphere; plasmasphere; postmidnight; quiet time magnetosphere; Van Allen Probes



  55      56      57      58      59      60