• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 7 entries in the Bibliography.

Showing entries from 1 through 7


Calculating ultra-low-frequency wave power of the compressional magnetic field vs. L and time: multi-spacecraft analysis using the Van Allen probes, THEMIS and GOES

Ultra-low-frequency (ULF) pulsations are critical in radial diffusion processes of energetic particles, and the power spectral density (PSD) of these fluctuations is an integral part of the radial diffusion coefficients and of assimilative models of the radiation belts. Using simultaneous measurements from two Geostationary Operational Environmental Satellites (GOES) geosynchronous satellites, three satellites of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft constellation and the two Van Allen probes during a 10-day period of intense geomagnetic activity and ULF pulsations of October 2012, we calculate the PSDs of ULF pulsations at different L shells. By following the time history of measurements at different L it is shown that, during this time, ULF wave power is not enhanced uniformly throughout the magnetosphere but instead is mostly enhanced in the outer L shells, close to the magnetopause, and to a lesser extent in the inner magnetosphere, closer to the plasmapause. Furthermore, by using phase differences between two GOES geosynchronous satellite pairs, we estimate the daily-averaged distribution of power at different azimuthal wave numbers. These results can have significant implications in better defining the effect of radial diffusion in the phase space density of energetic particles for different wave numbers or L shell distributions of ULF power.

Sarris, Theodore; Li, Xinlin;

Published by: Annales Geophysicae      Published on: 06/2016

YEAR: 2016     DOI: 10.5194/angeo-34-565-2016

energetic particles trapped; magnetospheric configuration and dynamics; Magnetospheric physics; storms and substorms; Van Allen Probes

Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a datadriven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave\textendashparticle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1038/nphys3799

Astrophysical plasmas; Magnetospheric physics; Van Allen Probes


Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma

We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 \texttimes 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59\textdegree), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth\textquoterights plasma environment.

Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.;

Published by: Scientific Reports      Published on: 12/2015

YEAR: 2015     DOI: 10.1038/srep17852

Magnetically confined plasmas; Magnetospheric physics

Combined effects of concurrent Pc5 and chorus waves on relativistic electron dynamics

We present electron phase space density (PSD) calculations as well as concurrent Pc5 and chorus wave activity observations during two intense geomagnetic storms caused by interplanetary coronal mass ejections (ICMEs) resulting in contradicting net effect. We show that, during the 17 March 2013 storm, the coincident observation of chorus and relativistic electron enhancements suggests that the prolonged chorus wave activity seems to be responsible for the enhancement of the electron population in the outer radiation belt even in the presence of pronounced outward diffusion. On the other hand, the significant depletion of electrons, during the 12 September 2014 storm, coincides with long-lasting outward diffusion driven by the continuous enhanced Pc5 activity since chorus wave activity was limited both in space and time.

Katsavrias, C.; Daglis, I.; Li, W.; Dimitrakoudis, S.; Georgiou, M.; Turner, D.; Papadimitriou, C.;

Published by: Annales Geophysicae      Published on: 09/2015

YEAR: 2015     DOI: 10.5194/angeo-33-1173-2015

Magnetospheric physics

Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss

Over 40 years ago it was suggested that electron loss in the region of the radiation belts that overlaps with the region of high plasma density called the plasmasphere, within four to five Earth radii1, 2, arises largely from interaction with an electromagnetic plasma wave called plasmaspheric hiss3, 4, 5. This interaction strongly influences the evolution of the radiation belts during a geomagnetic storm, and over the course of many hours to days helps to return the radiation-belt structure to its \textquoteleftquiet\textquoteright pre-storm configuration. Observations have shown that the long-term electron-loss rate is consistent with this theory but the temporal and spatial dynamics of the loss process remain to be directly verified. Here we report simultaneous measurements of structured radiation-belt electron losses and the hiss phenomenon that causes the losses. Losses were observed in the form of bremsstrahlung X-rays generated by hiss-scattered electrons colliding with the Earth\textquoterights atmosphere after removal from the radiation belts. Our results show that changes of up to an order of magnitude in the dynamics of electron loss arising from hiss occur on timescales as short as one to twenty minutes, in association with modulations in plasma density and magnetic field. Furthermore, these loss dynamics are coherent with hiss dynamics on spatial scales comparable to the size of the plasmasphere. This nearly global-scale coherence was not predicted and may affect the short-term evolution of the radiation belts during active times.

Breneman, A.; Halford, A.; Millan, R.; McCarthy, M.; Fennell, J.; Sample, J.; Woodger, L.; Hospodarsky, G.; Wygant, J.; Cattell, C.; Goldstein, J.; Malaspina, D.; Kletzing, C.;

Published by: Nature      Published on: 06/2015

YEAR: 2015     DOI: 10.1038/nature14515

Magnetospheric physics; Van Allen Probes


An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Rotationally driven zebra stripes in Earth s inner radiation belt

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth\textquoterights rotation can change the velocity of trapped particles by only about 1\textendash2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth\textquoterights inner radiation belt are organized in regular, highly structured and unexpected \textquoteleftzebra stripes\textquoteright, even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth\textquoterights rotation. Radiation-belt electrons are trapped in Earth\textquoterights dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth\textquoterights rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

Ukhorskiy, A; Sitnov, M.; Mitchell, D.; Takahashi, K; Lanzerotti, L.; Mauk, B.;

Published by: Nature      Published on: 01/2014

YEAR: 2014     DOI: 10.1038/nature13046

Magnetospheric physics; Van Allen Probes