Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1197 entries in the Bibliography.


Showing entries from 101 through 150


2021

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of density data obtained from RBSP-B and four months of data from Arase satellites. The results show that density irregularities are present globally at all MLT sectors and L-shells both inside and outside the plasmapause, with a higher occurrence at L > 4. The occurrence of density irregularities is found to be higher during disturbed geomagnetic and interplanetary conditions. The case studies presented here revealed: 1) The plasmaspheric density irregularities observed during both quiet and disturbed conditions are found to co-exist with the hot plasma sheet population. 2) During quiet periods, the plasma waves in the whistler-mode frequency range are found to be modulated by the small-scale density irregularities, with density depletions coinciding well with the decrease in whistler intensity. Our observations suggest that different source mechanisms are responsible for the generation of density structures at different MLTs and geomagnetic conditions.This article is protected by copyright. All rights reserved.

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of density data obtained from RBSP-B and four months of data from Arase satellites. The results show that density irregularities are present globally at all MLT sectors and L-shells both inside and outside the plasmapause, with a higher occurrence at L > 4. The occurrence of density irregularities is found to be higher during disturbed geomagnetic and interplanetary conditions. The case studies presented here revealed: 1) The plasmaspheric density irregularities observed during both quiet and disturbed conditions are found to co-exist with the hot plasma sheet population. 2) During quiet periods, the plasma waves in the whistler-mode frequency range are found to be modulated by the small-scale density irregularities, with density depletions coinciding well with the decrease in whistler intensity. Our observations suggest that different source mechanisms are responsible for the generation of density structures at different MLTs and geomagnetic conditions.This article is protected by copyright. All rights reserved.

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density (PSD) profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy-dependent relativistic electron dropout over a limited L-shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave-induced relativistic electron loss in the radiation belt.

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

Challenging the Use of Ring Current Indices During Geomagnetic Storms

Abstract The ring current experiences dramatic enhancements during geomagnetic storms, however understanding the global distribution of ring current energy content is restricted by spacecraft coverage. Many studies use ring current indices as a proxy for energy content, but these indices average over spatial variations and include additional contributions. We have conducted an analysis of Van Allen Probes’ data, identifying the spatial distribution and storm-time variations of energy content. Ion observations from the HOPE and RBSPICE instruments were used to estimate energy content in L-MLT bins. The results show large enhancements particularly in the premidnight sector during the main phase, alongside reductions in local time asymmetry and intensity during the recovery phase. A comparison with estimated energy content using the Sym-H index was conducted. In agreement with previous results, the Sym-H index significantly overestimates (by up to ∼ 4 times) the energy content, and we attribute the difference to contributions from additional current systems. A new finding is an observed temporal discrepancy, where energy content estimates from the Sym-H index maximise 3 to 9 hours earlier than in situ observations. Case studies reveal a complex relationship, where variable degrees of agreement between the Sym-H index and in situ measurements are observed. The results highlight the drawbacks of ring current indices and emphasise the variability of the storm time ring current.

Sandhu, J.; Rae, I.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028423

ring current; Geomagnetic storms; Van Allen Probes; inner magnetosphere; substorms

Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations

Abstract Energy spectra of ring current protons are crucial to understanding the ring current dynamics. Based on high-quality Van Allen Probes RBSPICE measurements, we investigate the global distribution of the reversed proton energy spectra using the 2013-2019 RBSPICE datasets. The reversed proton energy spectra are characterized by the distinct flux minima around 50 - 100 keV and flux maxima around 200 - 400 keV. Our results show that the reversed proton energy spectrum is prevalent inside the plasmasphere, with the occurrence rates > 90\% at L ∼2 - 4 during geomagnetically quiet periods. Its occurrence also manifests a significant decrease trend with increasing L-shell and enhanced geomagnetic activity. It is indicated that the substorm-associated and/or convection processes are likely to lead to the disappearances of the reversed spectra. These results provide important clues for exploring the underlying physical mechanisms responsible for the formation and evolution of reversed proton energy spectra.

Juan, Yi; Song, Fu; Binbin, Ni; Xudong, Gu; Hua, Man; Xiang, Zheng; Cao, Xing; Shi, Run; Zhao, Yiwen;

Published by: Geophysical Research Letters      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091559

Van Allen Probes

Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations

Abstract Energy spectra of ring current protons are crucial to understanding the ring current dynamics. Based on high-quality Van Allen Probes RBSPICE measurements, we investigate the global distribution of the reversed proton energy spectra using the 2013-2019 RBSPICE datasets. The reversed proton energy spectra are characterized by the distinct flux minima around 50 - 100 keV and flux maxima around 200 - 400 keV. Our results show that the reversed proton energy spectrum is prevalent inside the plasmasphere, with the occurrence rates > 90\% at L ∼2 - 4 during geomagnetically quiet periods. Its occurrence also manifests a significant decrease trend with increasing L-shell and enhanced geomagnetic activity. It is indicated that the substorm-associated and/or convection processes are likely to lead to the disappearances of the reversed spectra. These results provide important clues for exploring the underlying physical mechanisms responsible for the formation and evolution of reversed proton energy spectra.

Juan, Yi; Song, Fu; Binbin, Ni; Xudong, Gu; Hua, Man; Xiang, Zheng; Cao, Xing; Shi, Run; Zhao, Yiwen;

Published by: Geophysical Research Letters      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091559

Van Allen Probes

Bayesian Model for HOPE Mass Spectrometers on Van Allen Probes

Abstract Space instruments rely heavily on modeling to predict and understand the instrument response, enabling a determination of the capabilities and resolution. The Bayesian approach provides a framework to incorporate prior knowledge and propagate uncertainty to predict the instrument response. We present an empirical Bayes model for the end-to-end performance of the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers aboard the Van Allen Probes mission. In this model, we use a combination of external modeling, laboratory calibration, and expert opinion to construct the time-of-flight spectra and demonstrate good agreement with on-orbit data. The empirical Bayes model is applied to explore doubly charged ions and carbon, nitrogen, oxygen discrimination during the Van Allen Probes mission. This article is protected by copyright. All rights reserved.

Vira, A.; Larsen, B.; Skoug, R.; Fernandes, P.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028862

Van Allen Probes

2020

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 hours. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 hours. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativistic electron energization, electron distributions are most anisotropic within around a day of Dstmin and become more isotropic in the following week. Also, each consecutively higher energy channel is associated with higher anisotropy after storm main phase. Changes in the pitch angle index are reflected in each energy channel; when 1.8 MeV electron pitch angle distributions increase (or decrease) in pitch angle index, so do the other energy channels. We show that the peak anisotropies differ between CME- and CIR- driven storms and measure the relaxation rate as the anisotropy falls after the storm. The isotropization rate in pitch angle index for CME-driven storms is -0.15±0.02 day−1 at 1.8 MeV, -0.30±0.01 day−1 at 3.4 MeV, and -0.39±0.02 day−1 at 5.2 MeV. For CIR-driven storms, the isotropization rates are -0.10±0.01 day−1 for 1.8 MeV, -0.13±0.02 day−1 for 3.4 MeV, and -0.11±0.02 day−1 for 5.2 MeV. This study shows that there is a global coherence across energies and that storm type may play a role in the evolution of electron pitch angle distributions.

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

Prompt emergence and disappearance of EMIC waves driven by the sequentially enhanced solar wind dynamic pressure

Van Allen Probes (VAPs) and multiple ground-based stations simultaneously observed prompt emergences and disappearances of electromagnetic ion cyclotron (EMIC) waves driven by the sequentially enhanced solar wind dynamic pressure in the dayside inner magnetosphere on 6 November 2015. The measured hot protons (> 60 keV) display enhancements of perpendicular temperature during compressions, which provides sufficient temperature anisotropies for the EMIC wave generation so that the calculated linear growth rate also agrees well with the observed wave spectrum. There are bidirectionally propagating EMIC waves observed by VAPs at off equator regions (MLAT from ∼ 13° to ∼ 18°), which indicates local wave excitation under the compressions’ impact. The quick responses of waves and particle distributions to the compressions and decompressions at multiple points in the dayside suggest that the external pressure pulses can be a direct driver for the inner magnetospheric wave evolution and energetic particle dynamics.

Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091479

EMIC wave; solar wind dynamic pressure; Magnetospheric compression; Multipoint observations; Van Allen Probes

Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of particle to magnetic field pressure) in regard to the satisfaction of instability conditions on said M/D-M modes under bi-Maxwellian distribution assumption, and ascertain the most likely region for such plasmas to occur. Our results indicate a strong preference for the pre-midnight sector of the nightside magnetosphere, with events ranging in time scales from half a minute (roughly 200 km in scale size) to several hours (multiple Earth radii). The statistical distribution of these plasma regions explicitly identifies the source region of “storm time Pc5 ULF waves” and suggests an alternative mechanism for their generation in the nightside inner magnetosphere.

Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028773

Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss wave models. The models of chorus and plasmaspheric hiss waves are presented as a function of combined geomagnetic activity (AE), solar wind velocity (V), and southward interplanetary magnetic field (Bs). The relatively smooth wave models reveal new features. Despite, the coupling between geomagnetic and solar wind parameters, the results show that each parameter still carries a sufficient amount of unique information to more accurately constrain the chorus and plasmaspheric hiss wave intensities. The new wave models presented here highlight the importance of multi-parameter wave models, and can improve radiation belt modeling.

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

Ring Current Decay During Geomagnetic Storm Recovery Phase: Comparison Between RBSP Observations and Theoretical Modeling

Ring current decay during storm recovery phase may be affected by different loss processes. In this study, we have investigated the lifetimes of ring current ions (H+ and O+) of energies from 1 keV to several hundred keV at L shell from 3 to 6 during the storm recovery phase through a statistical survey. The observational data of 48 geomagnetic storms from March 2013 to May 2019 are collected based on Van Allen Probe observations. We find that (1) the observed lifetimes of H+ and O+ in general increase with L shell and (2) the lifetimes of H+ is short than that of O+ when E < ∼50 keV while the situation is reversed when E > ∼50 keV. In addition, we have made use of the charge exchange theory, combined with previous experimental results on the charge exchange cross section and two distribution models of neutral hydrogen atoms in the exosphere, so as to directly estimate the ring current ions decay caused by charge exchange mechanism only. Through the comparison between the model predictions of charge exchange lifetime and the observed lifetimes, we find that (3) the observed lifetimes are in general consistent with model results, which confirms that charge exchange is a dominant loss mechanism of ring current ions during storm recovery phase.

Chen, Ao; Yue, Chao; Chen, HongFei; Zong, Qiugang; Fu, Suiyan; Wang, Yongfu; Ren, Jie;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028500

charge exchange; lifetime; ring current decay; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wave models using plasma mass density values along the field line given by empirical power laws and from the International Reference Ionosphere model, we conclude that the waves are standing Alfvén field line resonances and that only odd-mode harmonics are excited. The model eigenfrequencies are strongly controlled by the density close to the apex of the field line, suggesting a new diagnostic for equatorial ionospheric density dynamics.

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wave models using plasma mass density values along the field line given by empirical power laws and from the International Reference Ionosphere model, we conclude that the waves are standing Alfvén field line resonances and that only odd-mode harmonics are excited. The model eigenfrequencies are strongly controlled by the density close to the apex of the field line, suggesting a new diagnostic for equatorial ionospheric density dynamics.

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wave models using plasma mass density values along the field line given by empirical power laws and from the International Reference Ionosphere model, we conclude that the waves are standing Alfvén field line resonances and that only odd-mode harmonics are excited. The model eigenfrequencies are strongly controlled by the density close to the apex of the field line, suggesting a new diagnostic for equatorial ionospheric density dynamics.

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wave models using plasma mass density values along the field line given by empirical power laws and from the International Reference Ionosphere model, we conclude that the waves are standing Alfvén field line resonances and that only odd-mode harmonics are excited. The model eigenfrequencies are strongly controlled by the density close to the apex of the field line, suggesting a new diagnostic for equatorial ionospheric density dynamics.

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Narrowband Magnetosonic Waves Near the Lower Hybrid Resonance Frequency in the Inner Magnetosphere: Wave Properties and Excitation Conditions

In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have central frequencies around 0.7fLHR with a bandwidth of 0.2fLHR. In addition, these waves are observed mainly in the dayside and dusk sectors outside the plasmapause, which is different from previously reported results. Moreover, the simultaneously observed energetic protons during wave activities show that the ratios of the ring speed Vr to the Alfvén speed VA mainly fall into the range of 0.8 < Vr/VA < 1, and this preferred condition for excitations of narrowband MS waves near fLHR is also verified by a parameter analysis of calculating linear wave growth rates combined with wave observations.

Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028158

central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes

Narrowband Magnetosonic Waves Near the Lower Hybrid Resonance Frequency in the Inner Magnetosphere: Wave Properties and Excitation Conditions

In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have central frequencies around 0.7fLHR with a bandwidth of 0.2fLHR. In addition, these waves are observed mainly in the dayside and dusk sectors outside the plasmapause, which is different from previously reported results. Moreover, the simultaneously observed energetic protons during wave activities show that the ratios of the ring speed Vr to the Alfvén speed VA mainly fall into the range of 0.8 < Vr/VA < 1, and this preferred condition for excitations of narrowband MS waves near fLHR is also verified by a parameter analysis of calculating linear wave growth rates combined with wave observations.

Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028158

central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), with a higher occurrence rate at L = 2.5–5.5 on the dayside. Proton rings occur mainly on the dayside of L > 5.0. During active geomagnetic periods, both MS waves and proton rings occur more frequently and extend to low L-shells. The current results provide the further observational evidence that MS waves can be excited by proton rings at a distant region and propagate to low L-shells.

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), with a higher occurrence rate at L = 2.5–5.5 on the dayside. Proton rings occur mainly on the dayside of L > 5.0. During active geomagnetic periods, both MS waves and proton rings occur more frequently and extend to low L-shells. The current results provide the further observational evidence that MS waves can be excited by proton rings at a distant region and propagate to low L-shells.

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground-based (by the all-sky imager at South Pole and ground-based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2-D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low- and high-m FLRs, with the azimuthal wave numbers varying from ~5 to ~23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally.

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground-based (by the all-sky imager at South Pole and ground-based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2-D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low- and high-m FLRs, with the azimuthal wave numbers varying from ~5 to ~23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally.

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground-based (by the all-sky imager at South Pole and ground-based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2-D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low- and high-m FLRs, with the azimuthal wave numbers varying from ~5 to ~23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally.

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the initial phase of the storm, and the main phase of the storm. The electron pitch angle distributions (PADs) and electron flux dropouts during the initial and main phases of this storm were investigated, and the evolution of the radial profile of electron phase space density (PSD) and the (μ, K) dependence of electron PSD dropouts (where μ, K, and L* are the three adiabatic invariants) were analyzed. The energy-independent decay of electrons at L > 4.5 was accompanied by butterfly PADs, suggesting that the magnetopause shadowing process may be the major loss mechanism during the initial phase of the storm at L > 4.5. The features of electron dropouts and 90°-peaked PADs were observed only for >1 MeV electrons at L < 4, indicating that the wave-induced scattering effect may dominate the electron loss processes at the lower L-shell during the main phase of the storm. Evaluations of the (μ, K) dependence of electron PSD drops and calculations of the minimum electron resonant energies of H+-band electromagnetic ion cyclotron (EMIC) waves support the scenario that the observed PSD drop peaks around L* = 3.9 may be caused mainly by the scattering of EMIC waves, whereas the drop peaks around L* = 4.6 may result from a combination of EMIC wave scattering and outward radial diffusion.

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

Published by: Earth and Planetary Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

Alpha Transmitter Signal Reflection and Triggered Emissions

Russian Alpha radio navigation system (RSDN-20) emits F1 = 11.9 kHz signals into the magnetosphere which propagate as whistler mode waves. Observed by waveform continuous burst mode from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on Van Allen Probes, a case is presented and featured with ducted propagation, multiple reflections, and triggered emissions. Both risers and fallers appear in the triggered emissions. We use a ray tracing method to demonstrate ducted propagation, which has a similar wave normal angle near 150° as the observation. The arrival time of reflected signals is estimated using propagation analysis and compared with the observed signal arrival time. To test the nonlinear cyclotron resonance theory, the interaction region scale and the order of chirping rate in triggered emission are estimated. The estimated interaction region scale of MLAT = −3° is smaller than the observed MLAT = −6°. The discrepancy may be caused by the parallel propagation assumption and background field model.

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; An, Xin; Horne, Richard;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090165

VLF transmitter; ducted propagation; triggered emission; Van Allen Probes

On the Formation of Wedge-Like Ion Spectral Structures in the Nightside Inner Magnetosphere

Recent observations in the nightside inner magnetosphere have identified a series of wedge-like spectral structures in the energy-time spectrograms of oxygen, helium, and hydrogen ion fluxes. Although the shapes and distributions of these structures have been characterized by case and statistical studies, their formation mechanism remains unclear. Here we utilize a particle tracing model to reproduce the wedge-like structures successively observed by the twin Van Allen Probes. The model suggests that these structures originate from intermittent substorm injection, and it is the accessibility region of these injected ions that determines their shapes. This mechanism is similar to the formation of another kind of structures, the inner magnetospheric nose-like structures, except that the wedge-like structures are separated from the tail population by the discontinuation of ion injections. This scenario is also supported by the distribution statistics of wedge-like structures, which provides new insights into the dynamics of the magnetotail-inner magnetosphere coupled system.

Zhou, Xu-Zhi; Ren, Jie; Yang, Fan; Yue, Chao; Zong, Qiu-Gang; Fu, Sui-Yan; Wang, Yongfu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028420

wedge-like structure; inner magnetosphere; substorm injection; magnetospheric convection; ring current; magnetotail; Van Allen Probes

On the Formation of Wedge-Like Ion Spectral Structures in the Nightside Inner Magnetosphere

Recent observations in the nightside inner magnetosphere have identified a series of wedge-like spectral structures in the energy-time spectrograms of oxygen, helium, and hydrogen ion fluxes. Although the shapes and distributions of these structures have been characterized by case and statistical studies, their formation mechanism remains unclear. Here we utilize a particle tracing model to reproduce the wedge-like structures successively observed by the twin Van Allen Probes. The model suggests that these structures originate from intermittent substorm injection, and it is the accessibility region of these injected ions that determines their shapes. This mechanism is similar to the formation of another kind of structures, the inner magnetospheric nose-like structures, except that the wedge-like structures are separated from the tail population by the discontinuation of ion injections. This scenario is also supported by the distribution statistics of wedge-like structures, which provides new insights into the dynamics of the magnetotail-inner magnetosphere coupled system.

Zhou, Xu-Zhi; Ren, Jie; Yang, Fan; Yue, Chao; Zong, Qiu-Gang; Fu, Sui-Yan; Wang, Yongfu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028420

wedge-like structure; inner magnetosphere; substorm injection; magnetospheric convection; ring current; magnetotail; Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic (MHD) magnetic field, backward tracing of O+ reveals that the structure is formed by ions with a long drift time from the plasma sheet during the magnetic storm main phase to the inner region with trajectories dominated by eastward drift motion, and the formation depends on the convection electric field model. The heavy ion dominance of the feature is explained by charge exchange losses along the long slow drift paths.

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic (MHD) magnetic field, backward tracing of O+ reveals that the structure is formed by ions with a long drift time from the plasma sheet during the magnetic storm main phase to the inner region with trajectories dominated by eastward drift motion, and the formation depends on the convection electric field model. The heavy ion dominance of the feature is explained by charge exchange losses along the long slow drift paths.

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic (MHD) magnetic field, backward tracing of O+ reveals that the structure is formed by ions with a long drift time from the plasma sheet during the magnetic storm main phase to the inner region with trajectories dominated by eastward drift motion, and the formation depends on the convection electric field model. The heavy ion dominance of the feature is explained by charge exchange losses along the long slow drift paths.

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagation rather than local field line resonance. There are only 20 out of 51 events with narrow-band poloidal ULF waves induced after the first impulse, showing a higher chance for ULF wave generation at the locations where the impulse equivalent frequency scale matches the local eigenfrequency. It is suggested that the shock-related ULF wave can be excited in the magnetosphere on condition that shock-induced impulse has large enough amplitude with its frequency matching the local eigenfrequency.

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagation rather than local field line resonance. There are only 20 out of 51 events with narrow-band poloidal ULF waves induced after the first impulse, showing a higher chance for ULF wave generation at the locations where the impulse equivalent frequency scale matches the local eigenfrequency. It is suggested that the shock-related ULF wave can be excited in the magnetosphere on condition that shock-induced impulse has large enough amplitude with its frequency matching the local eigenfrequency.

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagation rather than local field line resonance. There are only 20 out of 51 events with narrow-band poloidal ULF waves induced after the first impulse, showing a higher chance for ULF wave generation at the locations where the impulse equivalent frequency scale matches the local eigenfrequency. It is suggested that the shock-related ULF wave can be excited in the magnetosphere on condition that shock-induced impulse has large enough amplitude with its frequency matching the local eigenfrequency.

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagation rather than local field line resonance. There are only 20 out of 51 events with narrow-band poloidal ULF waves induced after the first impulse, showing a higher chance for ULF wave generation at the locations where the impulse equivalent frequency scale matches the local eigenfrequency. It is suggested that the shock-related ULF wave can be excited in the magnetosphere on condition that shock-induced impulse has large enough amplitude with its frequency matching the local eigenfrequency.

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Long-Term Dropout of Relativistic Electrons in the Outer Radiation Belt During Two Sequential Geomagnetic Storms

On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long-term dropout of MeV electrons during two sequential storms of similar magnitude under lightly disturbed solar wind conditions. Observations from low-altitude satellites show that the fluxes decreased first at higher L-shells and then gradually propagated inward. Moreover, the fluxes were almost completely lost and dropped to the background level at L > 5, while the fluxes at 4 < L < 5 were partly lost, as observed by RBSP and low-altitude satellites. Finally, observations show that on 5 February, only the fluxes at L > 5.5 recovered, while the fluxes at 4 < L < 5 did not return to the prestorm levels. These observations indicate that the loss and recovery processes developed first at higher L-shells. Phase space density (PSD) analysis shows that radial outward diffusion was the main reason for the dropout at higher L-shells. Regarding electron enhancement, stronger inward diffusion was accompanied by ultra-low-frequency (ULF) wave activities at higher L-shells, and chorus waves observed at outer L-shells provided conditions for relativistic electron flux recovery to the prestorm levels.

Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028098

Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes

Long-Term Dropout of Relativistic Electrons in the Outer Radiation Belt During Two Sequential Geomagnetic Storms

On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long-term dropout of MeV electrons during two sequential storms of similar magnitude under lightly disturbed solar wind conditions. Observations from low-altitude satellites show that the fluxes decreased first at higher L-shells and then gradually propagated inward. Moreover, the fluxes were almost completely lost and dropped to the background level at L > 5, while the fluxes at 4 < L < 5 were partly lost, as observed by RBSP and low-altitude satellites. Finally, observations show that on 5 February, only the fluxes at L > 5.5 recovered, while the fluxes at 4 < L < 5 did not return to the prestorm levels. These observations indicate that the loss and recovery processes developed first at higher L-shells. Phase space density (PSD) analysis shows that radial outward diffusion was the main reason for the dropout at higher L-shells. Regarding electron enhancement, stronger inward diffusion was accompanied by ultra-low-frequency (ULF) wave activities at higher L-shells, and chorus waves observed at outer L-shells provided conditions for relativistic electron flux recovery to the prestorm levels.

Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028098

Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes

Long-Term Dropout of Relativistic Electrons in the Outer Radiation Belt During Two Sequential Geomagnetic Storms

On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long-term dropout of MeV electrons during two sequential storms of similar magnitude under lightly disturbed solar wind conditions. Observations from low-altitude satellites show that the fluxes decreased first at higher L-shells and then gradually propagated inward. Moreover, the fluxes were almost completely lost and dropped to the background level at L > 5, while the fluxes at 4 < L < 5 were partly lost, as observed by RBSP and low-altitude satellites. Finally, observations show that on 5 February, only the fluxes at L > 5.5 recovered, while the fluxes at 4 < L < 5 did not return to the prestorm levels. These observations indicate that the loss and recovery processes developed first at higher L-shells. Phase space density (PSD) analysis shows that radial outward diffusion was the main reason for the dropout at higher L-shells. Regarding electron enhancement, stronger inward diffusion was accompanied by ultra-low-frequency (ULF) wave activities at higher L-shells, and chorus waves observed at outer L-shells provided conditions for relativistic electron flux recovery to the prestorm levels.

Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028098

Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes

Long-Term Dropout of Relativistic Electrons in the Outer Radiation Belt During Two Sequential Geomagnetic Storms

On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long-term dropout of MeV electrons during two sequential storms of similar magnitude under lightly disturbed solar wind conditions. Observations from low-altitude satellites show that the fluxes decreased first at higher L-shells and then gradually propagated inward. Moreover, the fluxes were almost completely lost and dropped to the background level at L > 5, while the fluxes at 4 < L < 5 were partly lost, as observed by RBSP and low-altitude satellites. Finally, observations show that on 5 February, only the fluxes at L > 5.5 recovered, while the fluxes at 4 < L < 5 did not return to the prestorm levels. These observations indicate that the loss and recovery processes developed first at higher L-shells. Phase space density (PSD) analysis shows that radial outward diffusion was the main reason for the dropout at higher L-shells. Regarding electron enhancement, stronger inward diffusion was accompanied by ultra-low-frequency (ULF) wave activities at higher L-shells, and chorus waves observed at outer L-shells provided conditions for relativistic electron flux recovery to the prestorm levels.

Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028098

Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes

Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves

A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, https://doi.org/10.1029/2018GL081578). The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmaspheric hiss from statistics are adopted for driving our simulation. The pitch angle diffusion rates of the low-frequency band hiss present a “gap” with minimum magnitude at pitch angle αe ∼ 70°, a condition not favoring the transport of large pitch angle electrons toward the loss cone. However, the diffusion rates of the high-frequency band hiss have peak values at αe ∼ 70°, filling up for the “gap” of the low-frequency hiss diffusion rates. The realistic wave-driven electron PSD evolutions demonstrate that the collaborated effect of the low-frequency band and high-frequency band hiss can cause significant precipitation losses of energetic electrons of tens to several hundred keV within 2 days.

He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028157

two-band hiss; radiation belt electron; loss; Van Allen Probes

Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves

A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, https://doi.org/10.1029/2018GL081578). The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmaspheric hiss from statistics are adopted for driving our simulation. The pitch angle diffusion rates of the low-frequency band hiss present a “gap” with minimum magnitude at pitch angle αe ∼ 70°, a condition not favoring the transport of large pitch angle electrons toward the loss cone. However, the diffusion rates of the high-frequency band hiss have peak values at αe ∼ 70°, filling up for the “gap” of the low-frequency hiss diffusion rates. The realistic wave-driven electron PSD evolutions demonstrate that the collaborated effect of the low-frequency band and high-frequency band hiss can cause significant precipitation losses of energetic electrons of tens to several hundred keV within 2 days.

He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028157

two-band hiss; radiation belt electron; loss; Van Allen Probes

Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe

Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and WNA. From the analytical Bw models, we found MS wave amplitude Bw has a positive relation with the intensity of geomagnetic activities both inside and outside the plasmapause, while the Bw can reach higher values inside the plasmapause than it does outside the plasmapause as the kp index increases. The Bw distribution on the norF demonstrates that most of the wave energies are concentrated on the lower harmonics part, which results from the excitation mechanism of MS waves. In addition, the Bw distribution on the WNA shows that the waves with larger normal angles have higher values of wave amplitude. Our analytic MS wave model agrees with the observed distribution in 3-D space of L, MLT, and λ well with high value of determine coefficient R2. The extended λ dimension will help us to calculate the more accurate bounced averaged diffusion coefficients during particles transit time.

Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028527

fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes

Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe

Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and WNA. From the analytical Bw models, we found MS wave amplitude Bw has a positive relation with the intensity of geomagnetic activities both inside and outside the plasmapause, while the Bw can reach higher values inside the plasmapause than it does outside the plasmapause as the kp index increases. The Bw distribution on the norF demonstrates that most of the wave energies are concentrated on the lower harmonics part, which results from the excitation mechanism of MS waves. In addition, the Bw distribution on the WNA shows that the waves with larger normal angles have higher values of wave amplitude. Our analytic MS wave model agrees with the observed distribution in 3-D space of L, MLT, and λ well with high value of determine coefficient R2. The extended λ dimension will help us to calculate the more accurate bounced averaged diffusion coefficients during particles transit time.

Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028527

fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes

Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe

Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and WNA. From the analytical Bw models, we found MS wave amplitude Bw has a positive relation with the intensity of geomagnetic activities both inside and outside the plasmapause, while the Bw can reach higher values inside the plasmapause than it does outside the plasmapause as the kp index increases. The Bw distribution on the norF demonstrates that most of the wave energies are concentrated on the lower harmonics part, which results from the excitation mechanism of MS waves. In addition, the Bw distribution on the WNA shows that the waves with larger normal angles have higher values of wave amplitude. Our analytic MS wave model agrees with the observed distribution in 3-D space of L, MLT, and λ well with high value of determine coefficient R2. The extended λ dimension will help us to calculate the more accurate bounced averaged diffusion coefficients during particles transit time.

Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028527

fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes

Cross-Scale Quantification of Storm-Time Dayside Magnetospheric Magnetic Flux Content

A clear understanding of storm-time magnetospheric dynamics is essential for a reliable storm forecasting capability. The dayside magnetospheric response to an interplanetary coronal mass ejection (ICME; dynamic pressure Pdyn > 20 nPa and storm-time index SYM-H < −150 nT) is investigated using in situ OMNI, Geotail, Cluster, MMS, GOES, Van Allen Probes, and THEMIS measurements. The dayside magnetic flux content is directly quantified from in situ magnetic field measurements at different radial distances. The arrival of the ICME, consisting of shock and sheath regions preceding a magnetic cloud, initiated a storm sudden commencement (SSC) phase (SYM-H ~ +50 nT). At SSC, the magnetopause standoff distance was compressed earthward at ICME shock encounter at an average rate ~−10.8 Earth radii per hour for ~10 min, resulting in a rapid 40\% reduction in the magnetospheric volume. The “closed” magnetic flux content remained constant at 170 ± 30 kWb inside the compressed dayside magnetosphere, even in the presence of dayside reconnection, as evident by an outsized flux transfer event containing 160 MWb. During the storm main and recovery phases, the magnetosphere expanded. The dayside magnetic flux did not remain constant within the expanding magnetosphere (110 ± 30 kWb), resulting in a 35\% reduction in pre-storm flux content during the magnetic cloud encounter. At that stage, the magnetospheric magnetic flux was eroded resulting in a weakened dayside magnetospheric field strength at radial distances R ≥ 5 RE. It is concluded that the inadequate replenishment of the eroded dayside magnetospheric flux during the magnetosphere expansion phase is due to a time lag in storm-time Dungey cycle.

Akhavan-Tafti, M.; Fontaine, D.; Slavin, J.; Le Contel, O.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028027

interplanetary coronal mass ejection; magnetic flux quantification; cross-scale observations; flux transfer event; Dungey cycle; Geomagnetic storm; Van Allen Probes

First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. This is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.

Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028315

Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes



  1      2      3      4      5      6