Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3761 entries in the Bibliography.


Showing entries from 551 through 600


2020

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce-averaged PA diffusion coefficients from three types of waves (hiss, lightning-generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi-linear theory, while the CRAND source follows the results in Xiang et al. (2019, https://doi.org/10.1029/2018GL081730). The simulation results indicate that both LGW and VLF transmitter waves can enhance loss and weaken the top hat PA distribution induced by hiss waves. For 470 keV electrons at L = 2.5, simulation results without CRAND show a much quicker decrease than observations from the Van Allen Probes. After including CRAND, simulated electron flux variations reproduce satellite observations, suggesting that CRAND is an important source for hundreds of keV electrons in the slot region during quiet times. The balance between the CRAND source and loss due to wave-particle interactions provides a lower limit to relativistic electron fluxes in the slot region, which can act as an important reference point for instrument calibration when a true background level is warranted.

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce-averaged PA diffusion coefficients from three types of waves (hiss, lightning-generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi-linear theory, while the CRAND source follows the results in Xiang et al. (2019, https://doi.org/10.1029/2018GL081730). The simulation results indicate that both LGW and VLF transmitter waves can enhance loss and weaken the top hat PA distribution induced by hiss waves. For 470 keV electrons at L = 2.5, simulation results without CRAND show a much quicker decrease than observations from the Van Allen Probes. After including CRAND, simulated electron flux variations reproduce satellite observations, suggesting that CRAND is an important source for hundreds of keV electrons in the slot region during quiet times. The balance between the CRAND source and loss due to wave-particle interactions provides a lower limit to relativistic electron fluxes in the slot region, which can act as an important reference point for instrument calibration when a true background level is warranted.

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave amplitudes are typically strong at L < 3 with an occurrence rate up to ~30\% on the nightside. The lifetime calculation indicates that LGWs play an important role in scattering electrons from tens of keV to several MeV at L < ~2.5. Our newly constructed LGW models are critical for evaluating the global effects of LGWs on energetic electron loss at L < 4.

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave amplitudes are typically strong at L < 3 with an occurrence rate up to ~30\% on the nightside. The lifetime calculation indicates that LGWs play an important role in scattering electrons from tens of keV to several MeV at L < ~2.5. Our newly constructed LGW models are critical for evaluating the global effects of LGWs on energetic electron loss at L < 4.

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes

Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere

Using measurements from the Van Allen Probes, we show that field-aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field-aligned anisotropies from 1.2 to >2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated with precipitating electron energies and energy fluxes and also O+ ion outflow energies. These observations yield empirical inner magnetosphere relations between the DAW and electron inputs and the O+ ion outflow response, providing important constraints for models. They also suggest that DAWs play an important role in enhancing field-aligned electron input into the ionosphere that facilitates the outflow and subsequent energization of O+ ions in the wave fields into the inner magnetosphere.

Hull, A.; Chaston, C.; Bonnell, J.; Damiano, P.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088985

dispersive Alfvén waves; field-aligned electrons; inner magnetosphere; oxygen ion outflow; Geomagnetic storms; substorms; Van Allen Probes

Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere

Using measurements from the Van Allen Probes, we show that field-aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field-aligned anisotropies from 1.2 to >2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated with precipitating electron energies and energy fluxes and also O+ ion outflow energies. These observations yield empirical inner magnetosphere relations between the DAW and electron inputs and the O+ ion outflow response, providing important constraints for models. They also suggest that DAWs play an important role in enhancing field-aligned electron input into the ionosphere that facilitates the outflow and subsequent energization of O+ ions in the wave fields into the inner magnetosphere.

Hull, A.; Chaston, C.; Bonnell, J.; Damiano, P.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088985

dispersive Alfvén waves; field-aligned electrons; inner magnetosphere; oxygen ion outflow; Geomagnetic storms; substorms; Van Allen Probes

Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere

Using measurements from the Van Allen Probes, we show that field-aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field-aligned anisotropies from 1.2 to >2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated with precipitating electron energies and energy fluxes and also O+ ion outflow energies. These observations yield empirical inner magnetosphere relations between the DAW and electron inputs and the O+ ion outflow response, providing important constraints for models. They also suggest that DAWs play an important role in enhancing field-aligned electron input into the ionosphere that facilitates the outflow and subsequent energization of O+ ions in the wave fields into the inner magnetosphere.

Hull, A.; Chaston, C.; Bonnell, J.; Damiano, P.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088985

dispersive Alfvén waves; field-aligned electrons; inner magnetosphere; oxygen ion outflow; Geomagnetic storms; substorms; Van Allen Probes

The Role of Hiss, Chorus, and EMIC Waves in the Modeling of the Dynamics of the Multi-MeV Radiation Belt Electrons

In this study, we performed a series of long-term and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multi-MeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in scattering near-equatorial mirroring electrons, and they assist EMIC waves, which scatter only small pitch angle electrons. The best agreement between the observations and the simulations (long-term and 17 January 2013 storm) is achieved when hiss, chorus, and EMIC waves are included.

Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028282

EMIC waves; Radiation belts; Whistler waves; VERB code; Fokker-Planck diffusion equation; Van Allen Probes

The Role of Hiss, Chorus, and EMIC Waves in the Modeling of the Dynamics of the Multi-MeV Radiation Belt Electrons

In this study, we performed a series of long-term and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multi-MeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in scattering near-equatorial mirroring electrons, and they assist EMIC waves, which scatter only small pitch angle electrons. The best agreement between the observations and the simulations (long-term and 17 January 2013 storm) is achieved when hiss, chorus, and EMIC waves are included.

Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028282

EMIC waves; Radiation belts; Whistler waves; VERB code; Fokker-Planck diffusion equation; Van Allen Probes

Can Solar Wind Decompressive Discontinuities Suppress Magnetospheric Electromagnetic Ion Cyclotron Waves Associated With Fresh Proton Injections?

Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Van Allen Probes missions during the main phase of the 23 February 2014 storm of a succession of solar wind rotational discontinuities decompressing the magnetosphere within 200 s, adiabatically decelerating the freshly injected >10 keV protons, and thus suppressing the EMIC waves in the inner magnetosphere. Our results highlight the importance of solar wind conditions for the evolution of inner magnetospheric EMIC waves from a new perspective.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090296

EMIC waves; solar wind discontinuity; storm/substorm injection; wave generation; adiabatic deceleration; inner magnetosphere; Van Allen Probes

Can Solar Wind Decompressive Discontinuities Suppress Magnetospheric Electromagnetic Ion Cyclotron Waves Associated With Fresh Proton Injections?

Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Van Allen Probes missions during the main phase of the 23 February 2014 storm of a succession of solar wind rotational discontinuities decompressing the magnetosphere within 200 s, adiabatically decelerating the freshly injected >10 keV protons, and thus suppressing the EMIC waves in the inner magnetosphere. Our results highlight the importance of solar wind conditions for the evolution of inner magnetospheric EMIC waves from a new perspective.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090296

EMIC waves; solar wind discontinuity; storm/substorm injection; wave generation; adiabatic deceleration; inner magnetosphere; Van Allen Probes

Can Solar Wind Decompressive Discontinuities Suppress Magnetospheric Electromagnetic Ion Cyclotron Waves Associated With Fresh Proton Injections?

Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Van Allen Probes missions during the main phase of the 23 February 2014 storm of a succession of solar wind rotational discontinuities decompressing the magnetosphere within 200 s, adiabatically decelerating the freshly injected >10 keV protons, and thus suppressing the EMIC waves in the inner magnetosphere. Our results highlight the importance of solar wind conditions for the evolution of inner magnetospheric EMIC waves from a new perspective.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090296

EMIC waves; solar wind discontinuity; storm/substorm injection; wave generation; adiabatic deceleration; inner magnetosphere; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time-averaged values reaching ~3–10 erg/cm2/s when AE ≥ 500 nT.

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time-averaged values reaching ~3–10 erg/cm2/s when AE ≥ 500 nT.

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time-averaged values reaching ~3–10 erg/cm2/s when AE ≥ 500 nT.

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time-averaged values reaching ~3–10 erg/cm2/s when AE ≥ 500 nT.

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the time-of-flight technique based on the pitch angle dependence of electron drift velocities, the “boomerang-shaped” stripes are inferred to originate from straight stripes at the time and location covered by Probe B. Given that straight stripes were indeed observed by Probe B, our observations strongly support the charged particle interacting with azimuthally localized ULF waves. A new method is provided to identify the location of ULF wave-particle interaction on the basis of remote observations of electron flux modulations.

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the time-of-flight technique based on the pitch angle dependence of electron drift velocities, the “boomerang-shaped” stripes are inferred to originate from straight stripes at the time and location covered by Probe B. Given that straight stripes were indeed observed by Probe B, our observations strongly support the charged particle interacting with azimuthally localized ULF waves. A new method is provided to identify the location of ULF wave-particle interaction on the basis of remote observations of electron flux modulations.

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the time-of-flight technique based on the pitch angle dependence of electron drift velocities, the “boomerang-shaped” stripes are inferred to originate from straight stripes at the time and location covered by Probe B. Given that straight stripes were indeed observed by Probe B, our observations strongly support the charged particle interacting with azimuthally localized ULF waves. A new method is provided to identify the location of ULF wave-particle interaction on the basis of remote observations of electron flux modulations.

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the time-of-flight technique based on the pitch angle dependence of electron drift velocities, the “boomerang-shaped” stripes are inferred to originate from straight stripes at the time and location covered by Probe B. Given that straight stripes were indeed observed by Probe B, our observations strongly support the charged particle interacting with azimuthally localized ULF waves. A new method is provided to identify the location of ULF wave-particle interaction on the basis of remote observations of electron flux modulations.

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

The Modulation of Plasma and Waves by Background Electron Density Irregularities in the Inner Magnetosphere

The background cold electron density plays an important role in plasma and wave dynamics. Here, we investigate an event with clear modulation of the particle fluxes and wave intensities by background electron density irregularities based on Van Allen Probes observations. The energies at the peak fluxes of protons and Helium ions of 100 eV to several keV are well correlated with the total electron density variation. Intense electromagnetic ion cyclotron (EMIC) and magnetosonic (MS) waves are simultaneously observed in the high-density regions and disappear in low-density regions. Based on the linear theory of wave growth, the EMIC waves are generated by the ~10 keV protons, while most MS waves are generated by the positive gradient of proton phase space density at several hundred eV in the high-density regions. Our results indicate the importance of background plasma density structures in generation of plasma waves by unstable ion distributions.

Yue, Chao; Ma, Qianli; Jun, Chae-Woo; Bortnik, Jacob; Zong, Qiugang; Zhou, Xuzhi; Jang, Eunjin; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088855

electron density irregularities; electromagnetic ion cyclotron; magnetosonic waves; suprathermal particles; Wave-particle interaction; wave growth rate; Van Allen Probes

The Modulation of Plasma and Waves by Background Electron Density Irregularities in the Inner Magnetosphere

The background cold electron density plays an important role in plasma and wave dynamics. Here, we investigate an event with clear modulation of the particle fluxes and wave intensities by background electron density irregularities based on Van Allen Probes observations. The energies at the peak fluxes of protons and Helium ions of 100 eV to several keV are well correlated with the total electron density variation. Intense electromagnetic ion cyclotron (EMIC) and magnetosonic (MS) waves are simultaneously observed in the high-density regions and disappear in low-density regions. Based on the linear theory of wave growth, the EMIC waves are generated by the ~10 keV protons, while most MS waves are generated by the positive gradient of proton phase space density at several hundred eV in the high-density regions. Our results indicate the importance of background plasma density structures in generation of plasma waves by unstable ion distributions.

Yue, Chao; Ma, Qianli; Jun, Chae-Woo; Bortnik, Jacob; Zong, Qiugang; Zhou, Xuzhi; Jang, Eunjin; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088855

electron density irregularities; electromagnetic ion cyclotron; magnetosonic waves; suprathermal particles; Wave-particle interaction; wave growth rate; Van Allen Probes

The Modulation of Plasma and Waves by Background Electron Density Irregularities in the Inner Magnetosphere

The background cold electron density plays an important role in plasma and wave dynamics. Here, we investigate an event with clear modulation of the particle fluxes and wave intensities by background electron density irregularities based on Van Allen Probes observations. The energies at the peak fluxes of protons and Helium ions of 100 eV to several keV are well correlated with the total electron density variation. Intense electromagnetic ion cyclotron (EMIC) and magnetosonic (MS) waves are simultaneously observed in the high-density regions and disappear in low-density regions. Based on the linear theory of wave growth, the EMIC waves are generated by the ~10 keV protons, while most MS waves are generated by the positive gradient of proton phase space density at several hundred eV in the high-density regions. Our results indicate the importance of background plasma density structures in generation of plasma waves by unstable ion distributions.

Yue, Chao; Ma, Qianli; Jun, Chae-Woo; Bortnik, Jacob; Zong, Qiugang; Zhou, Xuzhi; Jang, Eunjin; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088855

electron density irregularities; electromagnetic ion cyclotron; magnetosonic waves; suprathermal particles; Wave-particle interaction; wave growth rate; Van Allen Probes

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV electrons are dominantly controlled by hiss near the loss cone but by chorus at intermediate to large pitch angles. The simulated electron distributions driven by combined diffusion can reproduce the majority of the observations. Our results provide a direct observational evidence that hiss and chorus can simultaneously occur at the same electron drifting shells due to the irregular plasmasphere and highlight the importance of their combined effect on electron dynamics.

Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088753

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV electrons are dominantly controlled by hiss near the loss cone but by chorus at intermediate to large pitch angles. The simulated electron distributions driven by combined diffusion can reproduce the majority of the observations. Our results provide a direct observational evidence that hiss and chorus can simultaneously occur at the same electron drifting shells due to the irregular plasmasphere and highlight the importance of their combined effect on electron dynamics.

Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088753

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to the relativistic core population of the outer radiation belt). Here, we use a synthetic chorus wave model based on a combined database compiled from the Van Allen Probes and Cluster spacecraft VLF measurements to develop a comprehensive parametric model of electron lifetimes as a function of L-shell, electron energy, and geomagnetic activity. The wave model takes into account the wave amplitude dependence on geomagnetic latitude, wave normal angle distribution, and variations of wave frequency with latitude. We provide general analytical formulas to estimate electron lifetimes as a function of L-shell (for L = 3.0 to L = 6.5), electron energy (from 30 keV to 2 MeV), and geomagnetic activity parameterized by the AE index. The present model lifetimes are compared to previous studies and analytical results and also show a good agreement with measured lifetimes of 30 to 300 keV electrons at geosynchronous orbit.

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes



  10      11      12      13      14      15