Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2758 entries in the Bibliography.


Showing entries from 2601 through 2650


2013

Storm-induced energization of radiation belt electrons: Effect of wave obliquity

New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L\~5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron acceleration occurs in a regime of loss-limited energization. In this regime, the average wave obliquity plays a critical role in mitigating lifetime reduction as wave intensity increases with geomagnetic activity, suggesting that much larger energization levels should be reached during the early recovery phase of storms than during quiet time or moderate disturbances, the latter corresponding to stronger losses. These new effects should be included in realistic radiation belt simulations.

Artemyev, A.; Agapitov, O.; Mourenas, D.; Krasnoselskikh, V.; Zelenyi, L.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50837

magnetic storm; Radiation belts; wave-particle interactions

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100\textendash2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed convective linear growth rates indicate instability at the observed low frequencies. This suggests that the unusual low-frequency plasmaspheric hiss is likely to be amplified in the outer plasmasphere due to the injected energetic electrons.

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100\textendash2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed convective linear growth rates indicate instability at the observed low frequencies. This suggests that the unusual low-frequency plasmaspheric hiss is likely to be amplified in the outer plasmasphere due to the injected energetic electrons.

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100\textendash2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed convective linear growth rates indicate instability at the observed low frequencies. This suggests that the unusual low-frequency plasmaspheric hiss is likely to be amplified in the outer plasmasphere due to the injected energetic electrons.

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA\textquoterights Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

A novel technique for rapid L* calculation: algorithm and implementation

Computing the magnetic drift invariant, L*, rapidly and accurately has always been a challenge to magnetospheric modelers, especially given the im- portance of this quantity in the radiation belt community. Min et al. (2013) proposed a new method of calculating L* using the principle of energy con- servation. Continuing with the approach outlined therein, the present pa- per focuses on the technical details of the algorithm to outline the implemen- tation, systematic analysis of accuracy, and verification of the speed of the new method. We also show new improvements which enable near real-time computation of L*. The relative error is on the order of 10-3 when \~ 0.1 RE grid resolution is used and the calculation speed is about two seconds per particle in the popular Tsyganenko and Sitnov 05 model (TS05). Based on the application examples, we suggest that this method could be an added resource for the radiation belt community.

Min, Kyungguk; Bortnik, J.; Lee, Jeongwoo;

Published by: Journal of Geophysical Research      Published on: 05/2013

YEAR: 2013     DOI: 10.1002/jgra.50250

calculating L*; rapid L* calculation; RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

Van Allen Probes: Successful launch campaign and early operations exploring Earth\textquoterights radiation belts

The twin Van Allen Probe observatories developed at The Johns Hopkins University Applied Physics Laboratory for NASA\textquoterights Heliophysics Division completed final observatory integration and environmental test activities and were successfully launched into orbit around the Earth on August 30, 2012. As the science operations phase begins, the mission is providing exciting new information about the impact of radiation belt activity on the earth. The on-board boom mounted magnetometers and other instruments are the most sensitive sensors of their type that have ever flown in the Van Allen radiation belts. The observatories are producing near-Earth space weather information that can be used to provide warnings of potential power grid interruptions or satellite damaging storms. The Van Allen Probes are operating in a challenging high radiation environment, and at the same time they are designed to make an insubstantial electric and magnetic field contribution to their surroundings. This paper will describe the challenges associated with observatory integration and test activities and observatory on-orbit checkout and commissioning. The lessons learned can be applied to other observatories and payloads that will be exposed to similar environments.

Kirby, Karen; Stratton, Jim;

Published by:       Published on: 03/2013

YEAR: 2013     DOI: 10.1109/AERO.2013.6496838

Van Allen Probes

Mission Overview for the Radiation Belt Storm Probes Mission

Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth\textquoterights radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch vehicle and the overall mission design will be presented, and the plan for space weather data broadcast will be introduced.

Stratton, J.; Harvey, R.; Heyler, G.;

Published by: Space Science Reviews      Published on: 01/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9933-x

RBSP; Van Allen Probes

A novel technique for rapid L* calculation using UBK coordinates

[1] The magnetic drift invariant (L*) is an important quantity used for tracking and organizing particle dynamics in the radiation belts, but its accurate calculation has been computationally expensive in the past, thus making it difficult to employ this quantity in real-time space weather applications. In this paper, we propose a new, efficient method to calculate L* using the principle of energy conservation. This method uses Whipple\textquoterights (U, B, K) coordinates to quickly and accurately determine trajectories of particles at the magnetic mirror point from two-dimensional isoenergy contours. The method works for any magnetic field configuration and is able to accommodate constant electric potential along field lines. We compare the result of this method with those of International Radiation Belt Environment Modeling library (IRBEM-LIB) to demonstrate the performance of this new method. The method requires a preparation step, and thus may not be the optimal method for a single trajectory calculation; however, it presents a huge performance gain when adiabatically propagating a large population of particles in a given magnetic field configuration.

Min, Kyungguk; Bortnik, J.; Lee, Jeongwoo;

Published by: Journal of Geophysical Research      Published on: 01/2013

YEAR: 2013     DOI: 10.1029/2012JA018177

Generalized L value; L star; RBSP; Van Allen Probes

Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

[1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it.

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Artemyev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2013

YEAR: 2013     DOI: 10.1002/jgra.50452

RBSP; Van Allen Probes

Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

[1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it.

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Artemyev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2013

YEAR: 2013     DOI: 10.1002/jgra.50452

RBSP; Van Allen Probes

The Van Allen Probes Mission

Fox, N.; Burch, J.;

Published by:       Published on:

YEAR: 2013     DOI:

RBSP; Van Allen Probes

2012

Energetic radiation belt electron precipitation showing ULF modulation

1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s\textendash600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these \~MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. The simulation results are compared with balloon observations obtained during the January 21, 2005 CME-shock event. Rapid loss of 20 keV to 1.5 MeV electrons was detected by balloon-borne measurements ofbremsstrahlungX-rays during the MINIS campaign following the shock arrival at Earth. The global precipitation response of the radiation belts to this CME-shock driven storm was investigated focusing on their interaction with ULF waves. A primary cause for the precipitation modulation seen in both the simulation and the MINIS campaign is suggested based on the lowering of mirror points due to compressional magnetic field oscillations.

Brito, T.; Woodger, L.; Hudson, M.; MILLAN, R;

Published by: Geophysical Research Letters      Published on: 11/2012

YEAR: 2012     DOI: 10.1029/2012GL053790

Charged particle motion and acceleration; Energetic particles: precipitating; Radiation belts; wave-particle interactions

Energetic radiation belt electron precipitation showing ULF modulation

1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s\textendash600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these \~MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. The simulation results are compared with balloon observations obtained during the January 21, 2005 CME-shock event. Rapid loss of 20 keV to 1.5 MeV electrons was detected by balloon-borne measurements ofbremsstrahlungX-rays during the MINIS campaign following the shock arrival at Earth. The global precipitation response of the radiation belts to this CME-shock driven storm was investigated focusing on their interaction with ULF waves. A primary cause for the precipitation modulation seen in both the simulation and the MINIS campaign is suggested based on the lowering of mirror points due to compressional magnetic field oscillations.

Brito, T.; Woodger, L.; Hudson, M.; MILLAN, R;

Published by: Geophysical Research Letters      Published on: 11/2012

YEAR: 2012     DOI: 10.1029/2012GL053790

Charged particle motion and acceleration; Energetic particles: precipitating; Radiation belts; wave-particle interactions

Energetic radiation belt electron precipitation showing ULF modulation

1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s\textendash600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these \~MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. The simulation results are compared with balloon observations obtained during the January 21, 2005 CME-shock event. Rapid loss of 20 keV to 1.5 MeV electrons was detected by balloon-borne measurements ofbremsstrahlungX-rays during the MINIS campaign following the shock arrival at Earth. The global precipitation response of the radiation belts to this CME-shock driven storm was investigated focusing on their interaction with ULF waves. A primary cause for the precipitation modulation seen in both the simulation and the MINIS campaign is suggested based on the lowering of mirror points due to compressional magnetic field oscillations.

Brito, T.; Woodger, L.; Hudson, M.; MILLAN, R;

Published by: Geophysical Research Letters      Published on: 11/2012

YEAR: 2012     DOI: 10.1029/2012GL053790

Charged particle motion and acceleration; Energetic particles: precipitating; Radiation belts; wave-particle interactions

Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm

1] The temporal and spatial development of the ring current is evaluated during the 23\textendash26 October 2002 high-speed stream (HSS) storm, using a kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). The effects of nondipolar magnetic field configuration are investigated on both ring current ion and electron dynamics. As the self-consistent magnetic field is depressed at large (>4RE) radial distances on the nightside during the storm main phase, the particles\textquoteright drift velocities increase, the ion and electron fluxes are reduced and the ring current is confined closer to Earth. In contrast to ions, the electron fluxes increase closer to Earth and the fractional electron energy reaches \~20\% near storm peak due to better electron trapping in a nondipolar magnetic field. The ring current contribution to Dst calculated using Biot-Savart integration differs little from the DPS relation except during quiet time. RAM-SCB simulations underestimate |SYM-H| minimum by \~25\% but reproduce very well the storm recovery phase. Increased anisotropies develop in the ion and electron velocity distributions in a self-consistent magnetic field due to energy dependent drifts, losses, and dispersed injections. There is sufficient free energy to excite whistler mode chorus, electromagnetic ion cyclotron (EMIC), and magnetosonic waves in the equatorial magnetosphere. The linear growth rate of whistler mode chorus intensifies in the postmidnight to noon sector, EMIC waves are predominantly excited in the afternoon to midnight sector, and magnetosonic waves are excited over a broad MLT range both inside and outside the plasmasphere. The wave growth rates in a dipolar magnetic field have significantly smaller magnitude and spatial extent.

Jordanova, V.; Welling, D.; Zaharia, S.; Chen, L.; Thorne, R.;

Published by: Journal of Geophysical Research      Published on: 09/2012

YEAR: 2012     DOI: 10.1029/2011JA017433

Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm

1] The temporal and spatial development of the ring current is evaluated during the 23\textendash26 October 2002 high-speed stream (HSS) storm, using a kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). The effects of nondipolar magnetic field configuration are investigated on both ring current ion and electron dynamics. As the self-consistent magnetic field is depressed at large (>4RE) radial distances on the nightside during the storm main phase, the particles\textquoteright drift velocities increase, the ion and electron fluxes are reduced and the ring current is confined closer to Earth. In contrast to ions, the electron fluxes increase closer to Earth and the fractional electron energy reaches \~20\% near storm peak due to better electron trapping in a nondipolar magnetic field. The ring current contribution to Dst calculated using Biot-Savart integration differs little from the DPS relation except during quiet time. RAM-SCB simulations underestimate |SYM-H| minimum by \~25\% but reproduce very well the storm recovery phase. Increased anisotropies develop in the ion and electron velocity distributions in a self-consistent magnetic field due to energy dependent drifts, losses, and dispersed injections. There is sufficient free energy to excite whistler mode chorus, electromagnetic ion cyclotron (EMIC), and magnetosonic waves in the equatorial magnetosphere. The linear growth rate of whistler mode chorus intensifies in the postmidnight to noon sector, EMIC waves are predominantly excited in the afternoon to midnight sector, and magnetosonic waves are excited over a broad MLT range both inside and outside the plasmasphere. The wave growth rates in a dipolar magnetic field have significantly smaller magnitude and spatial extent.

Jordanova, V.; Welling, D.; Zaharia, S.; Chen, L.; Thorne, R.;

Published by: Journal of Geophysical Research      Published on: 09/2012

YEAR: 2012     DOI: 10.1029/2011JA017433

Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068

As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere\textendashIonosphere\textendashThermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted test particle simulations of electron dynamics for the CIR subset of the month-long CMIT fields. Dropout in electron flux at geosynchronous orbit and enhancement during recovery phase, characteristic of CIR-driven storms, is seen in these moderate (Dstmin=-56, -33 nT) events, while the two CIRs were characterized by increased solar wind velocity in the 650\textendash750 km/s range. The first beginning March 26 produced a greater enhancement in IMF Bz southward and stronger magnetospheric convection, leading to a greater radiation belt electron response at GOES. This study provides the first comparison of 2D and 3D particle dynamics in MHD simulation fields, incorporating the additional diffusive feature of Shebansky orbit trapping of electrons in the magnetic minima on the dayside above and below the equatorial plane. Overall loss occurs during the main phase for 2D and 3D simulations, while incorporation of plasmasheet injection in 2D runs produces a moderate enhancement for the March 26\textendash30 storm, less than observed at GOES, and recovery to initial flux levels as seen for the April 4\textendash7 storm.

Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.03.017

Magnetosphere; Modeling; Radiation belts; Solar wind

Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068

As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere\textendashIonosphere\textendashThermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted test particle simulations of electron dynamics for the CIR subset of the month-long CMIT fields. Dropout in electron flux at geosynchronous orbit and enhancement during recovery phase, characteristic of CIR-driven storms, is seen in these moderate (Dstmin=-56, -33 nT) events, while the two CIRs were characterized by increased solar wind velocity in the 650\textendash750 km/s range. The first beginning March 26 produced a greater enhancement in IMF Bz southward and stronger magnetospheric convection, leading to a greater radiation belt electron response at GOES. This study provides the first comparison of 2D and 3D particle dynamics in MHD simulation fields, incorporating the additional diffusive feature of Shebansky orbit trapping of electrons in the magnetic minima on the dayside above and below the equatorial plane. Overall loss occurs during the main phase for 2D and 3D simulations, while incorporation of plasmasheet injection in 2D runs produces a moderate enhancement for the March 26\textendash30 storm, less than observed at GOES, and recovery to initial flux levels as seen for the April 4\textendash7 storm.

Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.03.017

Magnetosphere; Modeling; Radiation belts; Solar wind

Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068

As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere\textendashIonosphere\textendashThermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted test particle simulations of electron dynamics for the CIR subset of the month-long CMIT fields. Dropout in electron flux at geosynchronous orbit and enhancement during recovery phase, characteristic of CIR-driven storms, is seen in these moderate (Dstmin=-56, -33 nT) events, while the two CIRs were characterized by increased solar wind velocity in the 650\textendash750 km/s range. The first beginning March 26 produced a greater enhancement in IMF Bz southward and stronger magnetospheric convection, leading to a greater radiation belt electron response at GOES. This study provides the first comparison of 2D and 3D particle dynamics in MHD simulation fields, incorporating the additional diffusive feature of Shebansky orbit trapping of electrons in the magnetic minima on the dayside above and below the equatorial plane. Overall loss occurs during the main phase for 2D and 3D simulations, while incorporation of plasmasheet injection in 2D runs produces a moderate enhancement for the March 26\textendash30 storm, less than observed at GOES, and recovery to initial flux levels as seen for the April 4\textendash7 storm.

Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.03.017

Magnetosphere; Modeling; Radiation belts; Solar wind

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrumented spinning spacecraft in an elliptical orbit around earth from 600 km perigee to 30,000 km apogee at 10 degree inclination to provide full sampling of the Van Allen radiation belts. The twin spacecraft will follow slightly different orbits and will lap each other 4 times per year; this offers simultaneous measurements over a range of spacecraft separation distances. A description of the spacecraft environment is provided along with spacecraft and subsystem key characteristics and accommodations that protect sensitive spacecraft electronics and support operations in the harsh radiation belt environment.

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Explaining sudden losses of outer radiation belt electrons during geomagnetic storms

The Van Allen radiation belts were first discovered in 1958 by the Explorer series of spacecraft1. The dynamic outer belt consists primarily of relativistic electrons trapped by the Earth\textquoterights magnetic field. Magnetospheric processes driven by the solar wind2 cause the electron flux in this belt to fluctuate substantially over timescales ranging from minutes to years3. The most dramatic of these events are known as flux \textquoterightdropouts\textquoteright and often occur during geomagnetic storms. During such an event the electron flux can drop by several orders of magnitude in just a few hours4, 5 and remain low even after a storm has abated. Various solar wind phenomena, including coronal mass ejections and co-rotating interaction regions6, can drive storm activity, but several outstanding questions remain concerning dropouts and the precise channels to which outer belt electrons are lost during these events. By analysing data collected at multiple altitudes by the THEMIS, GOES, and NOAA\textendashPOES spacecraft, we show that the sudden electron depletion observed during a recent storm\textquoterights main phase is primarily a result of outward transport rather than loss to the atmosphere.

Turner, Drew; Shprits, Yuri; Hartinger, Michael; Angelopoulos, Vassilis;

Published by: Nature Physics      Published on: 01/2012

YEAR: 2012     DOI: 10.1038/nphys2185

Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering

We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wavecavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped electrons. The primary consequence on the earth\textquoterights radiation belts is to reduce the lifetime of the trapped electron population.

Crabtree, C.; Rudakov, L.; Ganguli, G.; Mithaiwala, M.; Galinsky, V.; Shevchenko, V.;

Published by: Physics of Plasmas      Published on: 01/2012

YEAR: 2012     DOI: 10.1063/1.3692092

Whistler waves; Magnetosphere

Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering

We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wavecavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped electrons. The primary consequence on the earth\textquoterights radiation belts is to reduce the lifetime of the trapped electron population.

Crabtree, C.; Rudakov, L.; Ganguli, G.; Mithaiwala, M.; Galinsky, V.; Shevchenko, V.;

Published by: Physics of Plasmas      Published on: 01/2012

YEAR: 2012     DOI: 10.1063/1.3692092

Whistler waves; Magnetosphere

2011

Radiation belt storm probes: Resolving fundamental physics with practical consequences

The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth\textquoterights radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

Ukhorskiy, Aleksandr; Mauk, Barry; Fox, Nicola; Sibeck, David; Grebowsky, Joseph;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2010.12.005

Radiation belts; Space weather; Van Allen Probes

Radiation belt storm probes: Resolving fundamental physics with practical consequences

The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth\textquoterights radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

Ukhorskiy, Aleksandr; Mauk, Barry; Fox, Nicola; Sibeck, David; Grebowsky, Joseph;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2010.12.005

Radiation belts; Space weather; Van Allen Probes

Radiation belt storm probes: Resolving fundamental physics with practical consequences

The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth\textquoterights radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

Ukhorskiy, Aleksandr; Mauk, Barry; Fox, Nicola; Sibeck, David; Grebowsky, Joseph;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2010.12.005

Radiation belts; Space weather; Van Allen Probes

2009

On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions

[1] The present study statistically examines geosynchronous magnetic configurations and external conditions that characterize the loss of geosynchronous MeV electrons. The loss of MeV electrons often takes place during magnetospheric storms, but it also takes place without any clear storm activity. It is found that irrespective of storm activity, the day-night asymmetry of the geosynchronous H (north-south) magnetic component is pronounced during electron loss events. For the loss process, the magnitude, rather than the duration, of the magnetic distortion appears to be important, and its effective duration can be as short as \~30 min. The solar wind dynamic pressure tends to be high and interplanetary magnetic field BZ tends to be southward during electron loss events. Under such external conditions the dayside magnetopause moves closer to Earth, and the day-night magnetic asymmetry is enhanced. As a consequence the area of closed drift orbits shrinks. The magnetic field at the subsolar magnetopause, which is estimated from force balance with the solar wind dynamic pressure, is usually stronger than the nightside geosynchronous magnetic field during electron loss events. It is therefore suggested that geosynchronous MeV electrons on the night side are very often on open drift paths when geosynchronous MeV electrons are lost. Whereas the present result does not preclude the widely accepted idea that MeV electrons are lost to the atmosphere by wave-particle interaction, it suggests that magnetopause shadowing is another plausible loss process of geosynchronous MeV electrons.

Ohtani, S.; Miyoshi, Y.; Singer, H.; Weygand, J.;

Published by: Journal of Geophysical Research      Published on: 01/2009

YEAR: 2009     DOI: 10.1029/2008JA013391

Magnetopause Losses

On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions

[1] The present study statistically examines geosynchronous magnetic configurations and external conditions that characterize the loss of geosynchronous MeV electrons. The loss of MeV electrons often takes place during magnetospheric storms, but it also takes place without any clear storm activity. It is found that irrespective of storm activity, the day-night asymmetry of the geosynchronous H (north-south) magnetic component is pronounced during electron loss events. For the loss process, the magnitude, rather than the duration, of the magnetic distortion appears to be important, and its effective duration can be as short as \~30 min. The solar wind dynamic pressure tends to be high and interplanetary magnetic field BZ tends to be southward during electron loss events. Under such external conditions the dayside magnetopause moves closer to Earth, and the day-night magnetic asymmetry is enhanced. As a consequence the area of closed drift orbits shrinks. The magnetic field at the subsolar magnetopause, which is estimated from force balance with the solar wind dynamic pressure, is usually stronger than the nightside geosynchronous magnetic field during electron loss events. It is therefore suggested that geosynchronous MeV electrons on the night side are very often on open drift paths when geosynchronous MeV electrons are lost. Whereas the present result does not preclude the widely accepted idea that MeV electrons are lost to the atmosphere by wave-particle interaction, it suggests that magnetopause shadowing is another plausible loss process of geosynchronous MeV electrons.

Ohtani, S.; Miyoshi, Y.; Singer, H.; Weygand, J.;

Published by: Journal of Geophysical Research      Published on: 01/2009

YEAR: 2009     DOI: 10.1029/2008JA013391

Magnetopause Losses

2008

Global MHD test particle simulations of solar energetic electron trapping in the Earth\textquoterights radiation belts

Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth\textquoterights inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A09215, doi:10.1029/2006JA012218], where outer belt electrons were used as a source for the new belt.

KRESS, B; Hudson, M.; LOOPER, M; LYON, J; GOODRICH, C;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2008

YEAR: 2008     DOI: 10.1016/j.jastp.2008.05.018

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Global MHD test particle simulations of solar energetic electron trapping in the Earth\textquoterights radiation belts

Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth\textquoterights inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A09215, doi:10.1029/2006JA012218], where outer belt electrons were used as a source for the new belt.

KRESS, B; Hudson, M.; LOOPER, M; LYON, J; GOODRICH, C;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2008

YEAR: 2008     DOI: 10.1016/j.jastp.2008.05.018

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Global MHD test particle simulations of solar energetic electron trapping in the Earth\textquoterights radiation belts

Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth\textquoterights inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A09215, doi:10.1029/2006JA012218], where outer belt electrons were used as a source for the new belt.

KRESS, B; Hudson, M.; LOOPER, M; LYON, J; GOODRICH, C;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2008

YEAR: 2008     DOI: 10.1016/j.jastp.2008.05.018

Shock-Induced Transport. Slot Refilling and Formation of New Belts.



  51      52      53      54      55      56