Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 601 through 650


2019

RBSP-ECT Combined Spin-Averaged Electron Flux Data Product

We describe a new data product combining the spin-averaged electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration\textquoterights Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of spectra for September 2013 to the present. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product provides additional utility to the ECT data and offers a consistent cross calibrated data set for researchers interested in examining the dynamics of the inner magnetosphere across a wide range of energies.

Boyd, A.; Reeves, G.; Spence, H.; Funsten, H.; Larsen, B.; Skoug, R.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Kanekal, S.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026733

ECT; HOPE; MAGEis; Radiation belts; REPT; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Comparison of Electron Loss Models in the Inner Magnetosphere During the 2013~St. Patrick\textquoterights Day Geomagnetic Storm

Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment Modelling Challenge Event of the 2013 St. Patrick\textquoterights Day storm. Three models (Case 1, Case 2, and Case 3) of electron lifetimes due to wave-induced pitch angle scattering are used to compute the fluxes, which are compared with measurements from the Van Allen Probes. The three models consider electron losses due to interactions with whistler mode hiss waves inside the plasmasphere and with whistler mode chorus waves outside the plasmasphere. The Case 1 (historical) model produces excessive loss at low L shells before and after the storm, suggesting that it overestimates losses due to hiss during quiet times. During the storm main phase and early recovery all three models show good agreement with the observations, indicating that losses due to chorus during disturbed times are, in general, well accounted for by the models. Furthermore, the more recent Case 2 and Case 3 models show overall better agreement with the observed fluxes.

Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026649

electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model

Comparison of Electron Loss Models in the Inner Magnetosphere During the 2013~St. Patrick\textquoterights Day Geomagnetic Storm

Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment Modelling Challenge Event of the 2013 St. Patrick\textquoterights Day storm. Three models (Case 1, Case 2, and Case 3) of electron lifetimes due to wave-induced pitch angle scattering are used to compute the fluxes, which are compared with measurements from the Van Allen Probes. The three models consider electron losses due to interactions with whistler mode hiss waves inside the plasmasphere and with whistler mode chorus waves outside the plasmasphere. The Case 1 (historical) model produces excessive loss at low L shells before and after the storm, suggesting that it overestimates losses due to hiss during quiet times. During the storm main phase and early recovery all three models show good agreement with the observations, indicating that losses due to chorus during disturbed times are, in general, well accounted for by the models. Furthermore, the more recent Case 2 and Case 3 models show overall better agreement with the observed fluxes.

Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026649

electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model

Comparison of Electron Loss Models in the Inner Magnetosphere During the 2013~St. Patrick\textquoterights Day Geomagnetic Storm

Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment Modelling Challenge Event of the 2013 St. Patrick\textquoterights Day storm. Three models (Case 1, Case 2, and Case 3) of electron lifetimes due to wave-induced pitch angle scattering are used to compute the fluxes, which are compared with measurements from the Van Allen Probes. The three models consider electron losses due to interactions with whistler mode hiss waves inside the plasmasphere and with whistler mode chorus waves outside the plasmasphere. The Case 1 (historical) model produces excessive loss at low L shells before and after the storm, suggesting that it overestimates losses due to hiss during quiet times. During the storm main phase and early recovery all three models show good agreement with the observations, indicating that losses due to chorus during disturbed times are, in general, well accounted for by the models. Furthermore, the more recent Case 2 and Case 3 models show overall better agreement with the observed fluxes.

Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026649

electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave-particle interactions also contribute to drive butterfly PADs at L ≳ 1.9. Our study provides a feasible mechanism to explain the electron flux enhancement in the inner belt and the persistent presence of the butterfly PADs at L~1.5.

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

Published by: Geophysical Research Letters      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Analyzing EMIC Waves in the Inner Magnetosphere Using Long-Term Van Allen Probes Observations

With 64-month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 <= L <= 6.5, in the noon sector. They typically have small θ (<30\textdegree) and weakly left-hand polarization but become more oblique and linearly polarized at larger magnetic latitudes or L-shells. With the increase of AE* index, their occurrence rate significantly increases in the noon sector, and their source region extends to dusk sector. He+ band waves usually occur in the predawn and morning sectors at 3 <= L <= 4.5. They generally have moderate θ (30 \textdegree - 40\textdegree) and left-hand polarization and also become more oblique and linearly polarized at larger latitudes or L-shells. There is a clear enhancement of occurrence rate and amplitude during active geomagnetic periods, especially in the dusk and evening sectors. O+ band waves mainly occur at 3 <= L <= 4 in the predawn sector. They have either very small θ (<20\textdegree) or very large θ (>50\textdegree), and typically linear or weakly right-hand polarization. During active periods, they mostly occur at the midnight sector and L < 3.5. As a valuable supplement to previous statistical studies, our result provides not only a more compresentive EMIC wave model for evaluating their effects on the radiation belt, but also detailed observational constraints on generation mechanisms of EMIC waves.

Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026965

A long-term statistical work; EMIC wave; inner magnetosphere; spatial distribution; Van Allen Probes; Van Allen Probes observation; Wave fundamental characters

Formation of Asymmetric Electron Acoustic Double Layers in the Earth\textquoterights Inner Magnetosphere

The Van Allen Probes have observed both symmetric and asymmetric bipolar electric field structures in the Earth\textquoterights inner magnetosphere. In general, the symmetric bipolar structures are identified as electron-phase space holes, whereas the asymmetric structures are interpreted as electron acoustic double layers (EADLs). The generation mechanism of these EADLs is not entirely understood yet. We have modeled the EADLs observed on 13 November 2012 by Van Allen Probe-B. We performed a fluid simulation of the EADLs and tracked their formation and evolution in the simulation. We found that the localized depletion and enhancement in the electron populations act as a perturbation to excite the symmetric bipolar electron acoustic solitary waves, which later evolve into the EADLs. The Ponderomotive force is found to be the main driver behind transformation of the symmetric electron acoustic solitary waves to EADLs via formation of the electron acoustic shocks.

Lotekar, Ajay; Kakad, Amar; Kakad, Bharati;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2018JA026303

Asymmetric electron acoustic double layers; Electron acoustic shock; Electrostatic solitary wave; Fluid simulation; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Empirical Modeling of the Geomagnetosphere for SIR and CME-Driven Magnetic Storms

During geomagnetic disturbances, the solar wind arrives in the form of characteristic sequences lasting from tens of hours to days. The most important magnetic storm drivers are the coronal mass ejections (CMEs) and the slow-fast stream interaction regions (SIRs). Previous data-based magnetic field models did not distinguish between these types of the solar wind driving. In the present work we retained the basic structure of the Tsyganenko and Andreeva (2015) model but fitted it to data samples corresponding to (1) SIR-driven storms, (2) CME-driven storms preceded with a shock ahead of the CME, and (3) CME-driven storms without such shocks. The storm time dynamics of the model current systems has been represented using the parametrization method developed by Tsyganenko and Sitnov (2005), based on dynamical variables Wi, calculated from concurrent solar wind characteristics and their previous history. The database included observations of THEMIS, Polar, Cluster, Geotail, and Van Allen Probes missions during 155 storms in 1997\textendash2016. The model current systems drastically differ from each other with respect to decay rate and total current magnitudes. During SIR-induced storms, all current systems saturate, while during CME-induced disturbances, the saturation occurs only for the symmetric ring current and the tail current. The partial ring current parameters are drastically different between SIR- and CME-induced storm sets. In the case of SIR-driven storms, the total partial ring current is comparable with symmetric ring current, whereas for all CME-induced events it is nearly twice higher. The results are compared with GOES 15 magnetometer observations.

Andreeva, V.; Tsyganenko, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2018JA026008

Magnetic Storms; Magnetosphere; Modeling; Solar wind; spacecraft data; Van Allen Probes

Empirical Modeling of the Geomagnetosphere for SIR and CME-Driven Magnetic Storms

During geomagnetic disturbances, the solar wind arrives in the form of characteristic sequences lasting from tens of hours to days. The most important magnetic storm drivers are the coronal mass ejections (CMEs) and the slow-fast stream interaction regions (SIRs). Previous data-based magnetic field models did not distinguish between these types of the solar wind driving. In the present work we retained the basic structure of the Tsyganenko and Andreeva (2015) model but fitted it to data samples corresponding to (1) SIR-driven storms, (2) CME-driven storms preceded with a shock ahead of the CME, and (3) CME-driven storms without such shocks. The storm time dynamics of the model current systems has been represented using the parametrization method developed by Tsyganenko and Sitnov (2005), based on dynamical variables Wi, calculated from concurrent solar wind characteristics and their previous history. The database included observations of THEMIS, Polar, Cluster, Geotail, and Van Allen Probes missions during 155 storms in 1997\textendash2016. The model current systems drastically differ from each other with respect to decay rate and total current magnitudes. During SIR-induced storms, all current systems saturate, while during CME-induced disturbances, the saturation occurs only for the symmetric ring current and the tail current. The partial ring current parameters are drastically different between SIR- and CME-induced storm sets. In the case of SIR-driven storms, the total partial ring current is comparable with symmetric ring current, whereas for all CME-induced events it is nearly twice higher. The results are compared with GOES 15 magnetometer observations.

Andreeva, V.; Tsyganenko, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2018JA026008

Magnetic Storms; Magnetosphere; Modeling; Solar wind; spacecraft data; Van Allen Probes

Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts

Auroral kilometric radiation (AKR) can potentially produce serious damage to space-borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3\textendash6.5 and 00\textendash24 magnetic local time (MLT), with a higher occurrence on the nightside (20\textendash24 MLT and 00\textendash04 MLT) within L= 5\textendash6.5. All the AKR events are observed to be accompanied with suprathermal (\~1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to the dayside. The current study shows that AKR emissions from the remote sources are closely associated with electron injections.

Zhao, Wanli; Liu, Si; Zhang, Sai; Zhou, Qinghua; Yang, Chang; He, Yihua; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083944

Auroral kilometric radiation; global occurrence; Radiation belt; suprathermal electron flux enhancenments; Van Allen Probes

Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere

Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L-shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varies with L-shell, extending up to 12 kHz for L lower than 3. The effect is stronger in the afternoon, evening, and night sectors, consistent with more lightning and easier wave propagation through the ionosphere.

ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083918

DEMETER; Lightning; Van Allen Probes; whistler mode; WWLLN

Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere

Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L-shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varies with L-shell, extending up to 12 kHz for L lower than 3. The effect is stronger in the afternoon, evening, and night sectors, consistent with more lightning and easier wave propagation through the ionosphere.

ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083918

DEMETER; Lightning; Van Allen Probes; whistler mode; WWLLN

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Variability of the Proton Radiation Belt

Significant steady but slow variability of radiation belt proton intensity, in the energy range \~19\textendash200 MeV and for L<2.4, has been observed in an empirical model derived from data taken by Van Allen Probes during 2013\textendash2019. It is compared to predictions of a theoretical model based on measured initial and boundary conditions. Two aspects of the variability are considered in detail and require adjustments to model parameters. Observed inward transport of proton intensity maxima near L=1.9 and associated increasing intensity are caused in the model by inward radial diffusion from an external source while conserving the first two adiabatic invariants. The diffusion coefficient is constrained by these observations and is required to have increased near the start of 2015 by a factor \~2. Observed decay of proton intensity at L<1.6 can be caused only in part by energy loss to free and bound electrons in the local plasma and neutral atmosphere. Another, unknown loss mechanism is required to match observed proton decay rates as a function of energy. Accounting for the expected influence of slow radial diffusion at low L, the additional loss should have a mean lifetime near 22 years, independent of L and energy in the range \~19\textendash70 MeV. Several candidate loss mechanisms are considered\textemdashadded plasma or neutral density, elastic Coulomb scattering, plasma wave scattering, field-line curvature scattering, and collision with orbital debris\textemdashbut none are found viable.

Selesnick, R.; Albert, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026754

protons; radial diffusion; Radiation belt; Van Allen Probes

Variability of the Proton Radiation Belt

Significant steady but slow variability of radiation belt proton intensity, in the energy range \~19\textendash200 MeV and for L<2.4, has been observed in an empirical model derived from data taken by Van Allen Probes during 2013\textendash2019. It is compared to predictions of a theoretical model based on measured initial and boundary conditions. Two aspects of the variability are considered in detail and require adjustments to model parameters. Observed inward transport of proton intensity maxima near L=1.9 and associated increasing intensity are caused in the model by inward radial diffusion from an external source while conserving the first two adiabatic invariants. The diffusion coefficient is constrained by these observations and is required to have increased near the start of 2015 by a factor \~2. Observed decay of proton intensity at L<1.6 can be caused only in part by energy loss to free and bound electrons in the local plasma and neutral atmosphere. Another, unknown loss mechanism is required to match observed proton decay rates as a function of energy. Accounting for the expected influence of slow radial diffusion at low L, the additional loss should have a mean lifetime near 22 years, independent of L and energy in the range \~19\textendash70 MeV. Several candidate loss mechanisms are considered\textemdashadded plasma or neutral density, elastic Coulomb scattering, plasma wave scattering, field-line curvature scattering, and collision with orbital debris\textemdashbut none are found viable.

Selesnick, R.; Albert, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026754

protons; radial diffusion; Radiation belt; Van Allen Probes

Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations

Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron-Proton Telescope (REPT) instrument on board Van-Allen Probes from Oct-2012 to May-2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L-values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70\% cases the electron flux remains stable, while at L = 5, for ~82\% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53\% of the CIR storms and 30\% of the CME storms show electron flux increase. (iii) At a given L-value, the tendency for the electron flux variation diminishes with the increasing energies for both categories of storms. (iv) In case of CIR driven storms, the electron flux changes are associated with changes in Vsw and Sym-H. (v) At L ~ 3, CME storms show increased electron flux, while at L ~ 5, CIR storms are responsible for the electron flux enhancements. (vi) During CME and CIR driven storms, distinct electron flux variations are observed at L = 3 and L = 5.

Pandya, Megha; Veenadhari, B.; Ebihara, Y.; Kanekal, S.G.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026771

electron flux; innermagnetosphere; Magnetic Storms; Radiation belt; solar wind driver; Van Allen Probes

Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations

Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron-Proton Telescope (REPT) instrument on board Van-Allen Probes from Oct-2012 to May-2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L-values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70\% cases the electron flux remains stable, while at L = 5, for ~82\% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53\% of the CIR storms and 30\% of the CME storms show electron flux increase. (iii) At a given L-value, the tendency for the electron flux variation diminishes with the increasing energies for both categories of storms. (iv) In case of CIR driven storms, the electron flux changes are associated with changes in Vsw and Sym-H. (v) At L ~ 3, CME storms show increased electron flux, while at L ~ 5, CIR storms are responsible for the electron flux enhancements. (vi) During CME and CIR driven storms, distinct electron flux variations are observed at L = 3 and L = 5.

Pandya, Megha; Veenadhari, B.; Ebihara, Y.; Kanekal, S.G.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026771

electron flux; innermagnetosphere; Magnetic Storms; Radiation belt; solar wind driver; Van Allen Probes

Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations

Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron-Proton Telescope (REPT) instrument on board Van-Allen Probes from Oct-2012 to May-2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L-values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70\% cases the electron flux remains stable, while at L = 5, for ~82\% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53\% of the CIR storms and 30\% of the CME storms show electron flux increase. (iii) At a given L-value, the tendency for the electron flux variation diminishes with the increasing energies for both categories of storms. (iv) In case of CIR driven storms, the electron flux changes are associated with changes in Vsw and Sym-H. (v) At L ~ 3, CME storms show increased electron flux, while at L ~ 5, CIR storms are responsible for the electron flux enhancements. (vi) During CME and CIR driven storms, distinct electron flux variations are observed at L = 3 and L = 5.

Pandya, Megha; Veenadhari, B.; Ebihara, Y.; Kanekal, S.G.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026771

electron flux; innermagnetosphere; Magnetic Storms; Radiation belt; solar wind driver; Van Allen Probes

Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations

Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron-Proton Telescope (REPT) instrument on board Van-Allen Probes from Oct-2012 to May-2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L-values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70\% cases the electron flux remains stable, while at L = 5, for ~82\% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53\% of the CIR storms and 30\% of the CME storms show electron flux increase. (iii) At a given L-value, the tendency for the electron flux variation diminishes with the increasing energies for both categories of storms. (iv) In case of CIR driven storms, the electron flux changes are associated with changes in Vsw and Sym-H. (v) At L ~ 3, CME storms show increased electron flux, while at L ~ 5, CIR storms are responsible for the electron flux enhancements. (vi) During CME and CIR driven storms, distinct electron flux variations are observed at L = 3 and L = 5.

Pandya, Megha; Veenadhari, B.; Ebihara, Y.; Kanekal, S.G.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026771

electron flux; innermagnetosphere; Magnetic Storms; Radiation belt; solar wind driver; Van Allen Probes

Wave Normal Angle Distribution of Fast Magnetosonic Waves: A Survey of Van Allen Probes EMFISIS Observations

Using Van Allen Probe Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) wave observations from September 2012 to May 2018, we statistically investigate the distributions of power-weighted wave normal angle (WNA) of fast magnetosonic (MS) waves from L = 2\textendash6 within \textpm15\textdegree geomagnetic latitudes. The spatial distributions show that the MS WNAs are mainly confined within 87\textendash89\textdegree near the geomagnetic equator and decrease with increasing magnetic latitude. Further quantitative investigation demonstrates that the WNAs normally distribute as a mixture of two Gaussian distributions ranging from 85\textdegree to 88\textdegree, and the tangent of it can decrease as a Kappa distribution function when the waves propagate to higher latitudes. Our study completes the survey of spatial distributions of MS WNAs and provides quantitative dependence of the WNA distribution on the magnetic latitude in the inner magnetosphere, which can be readily useful in future global simulations of radiation belt particle dynamics.

Zou, Zhengyang; Zuo, Pingbing; Ni, Binbin; Wei, Fengsi; Zhao, Zhengyu; Cao, Xing; Fu, Song; Gu, Xudong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026556

Empirical Model; Fast Magnetosonic Waves; latitudinal dependence; power-weighted wave normal angles; spatial distributions; Van Allen Probes

The Evolution of a Pitch-Angle \textquotedblleftBite-Out\textquotedblright Scattering Signature Caused by EMIC Wave Activity: A Case Study

Electromagnetic ion cyclotron (EMIC) waves are understood to be one of the dominant drivers of relativistic electron loss from Earth\textquoterights radiation belts. Theory predicts that the associated gyroresonant wave-particle interaction results in a distinct energy-dependent \textquotedblleftbite-out\textquotedblright signature in the normalized flux distribution of electrons as they are scattered into the loss cone. We identify such signatures along with the responsible EMIC waves captured in situ by the Van Allen Probes on 15\textendash16 February 2017. Using the cold plasma approximation, we predict the pitch-angle cutoffs for the scattering signature for the captured EMIC wave and find it in good agreement with the observed electron bite-out scattering signature. Employing the close conjunction between the Van Allen Probes and THEMIS during this time, we explore the temporal and spatial evolution of the scattering signature, as well as the surrounding wave activity, and find that the scattering signature formed during continued wave activity over a period less than a day. These results are consistent with wave-particle interaction theory and support the hypothesis that EMIC waves are an important mechanism for rapid relativistic electron loss from the radiation belts.

Bingley, L.; Angelopoulos, V.; Sibeck, D.; Zhang, X.; Halford, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2018JA026292

Van Allen Probes



  11      12      13      14      15      16