Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 851 through 900


2019

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm

Using data from Defense Meteorological Satellite Program 16\textendash18, National Oceanic and Atmospheric Administration 15\textendash19, and METOP 1\textendash2 satellites, we reconstructed for the first time a two-dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm onset that continued during the storm main phase. Plasma pressure remained elevated during the first 18 hr of the recovery phase and then started to decrease to normal levels. We found that the variation in pressure correlates with the change in the slope of the Dst index, and that the plasma pressure nearly conserved its axial symmetry during the storm, giving one more evidence that the ring current provides the main contribution to the Dst variation. We also found that the plasma pressure in the magnetosphere correlates with the solar wind dynamic pressure with a correlation coefficient exceeding 0.9, which can be related to the pressure balance at the magnetospheric flanks. The results obtained here agree with the concept of the ring current generation by an inner magnetosphere plasma ring in magnetostatic equilibrium.

Stepanova, M.; Antonova, E.E.; Moya, P.S.; Pinto, V.A.; Valdivia, J.A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025965

Dynamic pressure; Geomagnetic storm; inner magnetosphere; plasma pressure; Solar wind; Van Allen Probes

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES-13 and GOES-15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves predominantly occur outside the plasmasphere. Meanwhile, the time duration and peak occurrence rate of EMIC waves associated with injections are shorter and limited to a narrower magnetic local time region than those without injections, indicating that these waves have localized source regions. He+ EMIC waves inside the plasmasphere associated with injection are usually accompanied by an increase in H+ flux within energies of 1\textendash50 keV through all magnetic local time regions, while most wave events outside the plasmasphere show less relationship with H+ flux increase. From these observations, we suggest that injected hot ions are the major driver of He+ EMIC waves inside the plasmasphere during active time. Expanding plasmasphere during quiet times can provide broad wave source regions for He+ EMIC waves on the dayside. However, H+ EMIC waves outside the plasmasphere show different characteristics, suggesting that these waves are generated by other processes.

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES-13 and GOES-15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves predominantly occur outside the plasmasphere. Meanwhile, the time duration and peak occurrence rate of EMIC waves associated with injections are shorter and limited to a narrower magnetic local time region than those without injections, indicating that these waves have localized source regions. He+ EMIC waves inside the plasmasphere associated with injection are usually accompanied by an increase in H+ flux within energies of 1\textendash50 keV through all magnetic local time regions, while most wave events outside the plasmasphere show less relationship with H+ flux increase. From these observations, we suggest that injected hot ions are the major driver of He+ EMIC waves inside the plasmasphere during active time. Expanding plasmasphere during quiet times can provide broad wave source regions for He+ EMIC waves on the dayside. However, H+ EMIC waves outside the plasmasphere show different characteristics, suggesting that these waves are generated by other processes.

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES-13 and GOES-15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves predominantly occur outside the plasmasphere. Meanwhile, the time duration and peak occurrence rate of EMIC waves associated with injections are shorter and limited to a narrower magnetic local time region than those without injections, indicating that these waves have localized source regions. He+ EMIC waves inside the plasmasphere associated with injection are usually accompanied by an increase in H+ flux within energies of 1\textendash50 keV through all magnetic local time regions, while most wave events outside the plasmasphere show less relationship with H+ flux increase. From these observations, we suggest that injected hot ions are the major driver of He+ EMIC waves inside the plasmasphere during active time. Expanding plasmasphere during quiet times can provide broad wave source regions for He+ EMIC waves on the dayside. However, H+ EMIC waves outside the plasmasphere show different characteristics, suggesting that these waves are generated by other processes.

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites

The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery phase, He+ band EMIC waves were observed in the ionosphere and magnetosphere. During the late recovery phase, H+ band EMIC waves emerged in response to enhanced earthward convection during substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a duration of less than 186 min from coordinated observations. The results could provide additional insights into the spatial characteristics and propagation features of EMIC waves during storm periods.

Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026299

EMIC wave; storm; substorm; Swarm; Van Allen Probes

Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites

The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery phase, He+ band EMIC waves were observed in the ionosphere and magnetosphere. During the late recovery phase, H+ band EMIC waves emerged in response to enhanced earthward convection during substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a duration of less than 186 min from coordinated observations. The results could provide additional insights into the spatial characteristics and propagation features of EMIC waves during storm periods.

Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026299

EMIC wave; storm; substorm; Swarm; Van Allen Probes

2018

Response of banded whistler-mode waves to the enhancement of solar wind dynamic pressure in the inner Earth\textquoterights magnetosphere

With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequency bands broadening could be locally excited by these hot electrons with increased anisotropy. The current study provides a great in situ evidence for the influence on frequencies of banded whistler waves by the enhancement of solar wind dynamic pressures, which reveals the important role of solar wind dynamic pressures playing in the frequency properties of banded whistler waves.

Yu, Xiongdong; Yuan, Zhigang; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yao, Fei; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: Mar-08-2020

YEAR: 2018     DOI: 10.1029/2018GL078849

Banded whistler-mode waves; Frequency properties; inner magnetosphere; solar wind dynamic pressure; Van Allen Probes

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves



  16      17      18      19      20      21