Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 4001 through 4050


2007

The energization of relativistic electrons in the outer Van Allen radiation belt

The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth\textquoterights magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave\textendashparticle interactions may be comparable to or more important than radial diffusion. Using data collected simultaneously by multiple satellites passing through the magnetosphere at different distances from the Earth, we demonstrate that the latter of these is the dominant mechanism responsible for relativistic electron acceleration. Specifically, we identify frequent and persistent peaks in equatorial electron phase space density near or inside geosynchronous orbit that provide unambiguous evidence for local wave\textendashparticle acceleration. These observations represent an important step towards a more complete physical understanding of radiation belt dynamics and to the development of space-weather models.

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner;

Published by: Nature Physics      Published on: 09/2007

YEAR: 2007     DOI: 10.1038/nphys655

Local Acceleration due to Wave-Particle Interaction

The energization of relativistic electrons in the outer Van Allen radiation belt

The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth\textquoterights magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave\textendashparticle interactions may be comparable to or more important than radial diffusion. Using data collected simultaneously by multiple satellites passing through the magnetosphere at different distances from the Earth, we demonstrate that the latter of these is the dominant mechanism responsible for relativistic electron acceleration. Specifically, we identify frequent and persistent peaks in equatorial electron phase space density near or inside geosynchronous orbit that provide unambiguous evidence for local wave\textendashparticle acceleration. These observations represent an important step towards a more complete physical understanding of radiation belt dynamics and to the development of space-weather models.

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner;

Published by: Nature Physics      Published on: 09/2007

YEAR: 2007     DOI: 10.1038/nphys655

Local Acceleration due to Wave-Particle Interaction

Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement

[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of violent geomagnetic disturbances resulted in large variations in ultrarelativistic electrons in the inner zone, indicating that these events are less rare than previously thought. Here we present results from a numerical study of shock-induced transport and energization of outer zone electrons in the 1\textendash7 MeV range, resulting in a newly formed 10\textendash20 MeV electron belt near L \~ 3. Test particle trajectories are followed in time-dependent fields from an MHD magnetospheric model simulation of the 29 October 2003 storm sudden commencement (SSC) driven by solar wind parameters measured at ACE. The newly formed belt is predominantly equatorially mirroring. This result is in part due to an SSC electric field pulse that is strongly peaked in the equatorial plane, preferentially accelerating equatorially mirroring particles. The timescale for subsequent pitch angle diffusion of the new belt, calculated using quasi-linear bounce-averaged diffusion coefficients, is in agreement with the observed delay in the appearance of peak fluxes at SAMPEX in low Earth orbit. We also present techniques for modeling radiation belt dynamics using test particle trajectories in MHD fields. Simulations are performed using code developed by the Center for Integrated Space Weather Modeling.

Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.;

Published by: Journal of Geophysical Research      Published on: 09/2007

YEAR: 2007     DOI: 10.1029/2006JA012218

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement

[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of violent geomagnetic disturbances resulted in large variations in ultrarelativistic electrons in the inner zone, indicating that these events are less rare than previously thought. Here we present results from a numerical study of shock-induced transport and energization of outer zone electrons in the 1\textendash7 MeV range, resulting in a newly formed 10\textendash20 MeV electron belt near L \~ 3. Test particle trajectories are followed in time-dependent fields from an MHD magnetospheric model simulation of the 29 October 2003 storm sudden commencement (SSC) driven by solar wind parameters measured at ACE. The newly formed belt is predominantly equatorially mirroring. This result is in part due to an SSC electric field pulse that is strongly peaked in the equatorial plane, preferentially accelerating equatorially mirroring particles. The timescale for subsequent pitch angle diffusion of the new belt, calculated using quasi-linear bounce-averaged diffusion coefficients, is in agreement with the observed delay in the appearance of peak fluxes at SAMPEX in low Earth orbit. We also present techniques for modeling radiation belt dynamics using test particle trajectories in MHD fields. Simulations are performed using code developed by the Center for Integrated Space Weather Modeling.

Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.;

Published by: Journal of Geophysical Research      Published on: 09/2007

YEAR: 2007     DOI: 10.1029/2006JA012218

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement

[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of violent geomagnetic disturbances resulted in large variations in ultrarelativistic electrons in the inner zone, indicating that these events are less rare than previously thought. Here we present results from a numerical study of shock-induced transport and energization of outer zone electrons in the 1\textendash7 MeV range, resulting in a newly formed 10\textendash20 MeV electron belt near L \~ 3. Test particle trajectories are followed in time-dependent fields from an MHD magnetospheric model simulation of the 29 October 2003 storm sudden commencement (SSC) driven by solar wind parameters measured at ACE. The newly formed belt is predominantly equatorially mirroring. This result is in part due to an SSC electric field pulse that is strongly peaked in the equatorial plane, preferentially accelerating equatorially mirroring particles. The timescale for subsequent pitch angle diffusion of the new belt, calculated using quasi-linear bounce-averaged diffusion coefficients, is in agreement with the observed delay in the appearance of peak fluxes at SAMPEX in low Earth orbit. We also present techniques for modeling radiation belt dynamics using test particle trajectories in MHD fields. Simulations are performed using code developed by the Center for Integrated Space Weather Modeling.

Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.;

Published by: Journal of Geophysical Research      Published on: 09/2007

YEAR: 2007     DOI: 10.1029/2006JA012218

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal angles and lightning-generated whistlers do not contribute significantly to radiation belt loss. The loss timescale of 2 MeV electrons due to plasmaspheric hiss propagating at small and intermediate wave normal angles in the center of the slot region (L = 2.5) lies in the range 1\textendash10 days, consistent with recent Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) observations. Wave turbulence in space, which is responsible for the generation plasmaspheric hiss, thus leads to the formation of the slot region. During active periods, losses due to plasmaspheric hiss may occur on a timescale of 1 day or less for a wide range of energies, 200 keV < E < 1 MeV, in the region 3.5 < L < 4.0. Plasmaspheric hiss may thus also be a significant loss process in the inner region of the outer radiation belt during magnetically disturbed periods.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 08/2007

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal angles and lightning-generated whistlers do not contribute significantly to radiation belt loss. The loss timescale of 2 MeV electrons due to plasmaspheric hiss propagating at small and intermediate wave normal angles in the center of the slot region (L = 2.5) lies in the range 1\textendash10 days, consistent with recent Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) observations. Wave turbulence in space, which is responsible for the generation plasmaspheric hiss, thus leads to the formation of the slot region. During active periods, losses due to plasmaspheric hiss may occur on a timescale of 1 day or less for a wide range of energies, 200 keV < E < 1 MeV, in the region 3.5 < L < 4.0. Plasmaspheric hiss may thus also be a significant loss process in the inner region of the outer radiation belt during magnetically disturbed periods.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 08/2007

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal angles and lightning-generated whistlers do not contribute significantly to radiation belt loss. The loss timescale of 2 MeV electrons due to plasmaspheric hiss propagating at small and intermediate wave normal angles in the center of the slot region (L = 2.5) lies in the range 1\textendash10 days, consistent with recent Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) observations. Wave turbulence in space, which is responsible for the generation plasmaspheric hiss, thus leads to the formation of the slot region. During active periods, losses due to plasmaspheric hiss may occur on a timescale of 1 day or less for a wide range of energies, 200 keV < E < 1 MeV, in the region 3.5 < L < 4.0. Plasmaspheric hiss may thus also be a significant loss process in the inner region of the outer radiation belt during magnetically disturbed periods.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 08/2007

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal angles and lightning-generated whistlers do not contribute significantly to radiation belt loss. The loss timescale of 2 MeV electrons due to plasmaspheric hiss propagating at small and intermediate wave normal angles in the center of the slot region (L = 2.5) lies in the range 1\textendash10 days, consistent with recent Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) observations. Wave turbulence in space, which is responsible for the generation plasmaspheric hiss, thus leads to the formation of the slot region. During active periods, losses due to plasmaspheric hiss may occur on a timescale of 1 day or less for a wide range of energies, 200 keV < E < 1 MeV, in the region 3.5 < L < 4.0. Plasmaspheric hiss may thus also be a significant loss process in the inner region of the outer radiation belt during magnetically disturbed periods.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 08/2007

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enhancement in 200\textendash700 keV electrons in the outer slot region near L = 3.3. Radial diffusion is much less effective but may partially contribute to the flux enhancement at lower L. Subsequent outward expansion of the plasmapause during the storm recovery phase effectively terminates local wave acceleration in the slot and prevents acceleration to energies higher than \~700 keV. A statistical analysis of energetic electron flux enhancements and wave and plasma properties over the entire CRRES mission supports the concept of local wave acceleration as a dominant process for refilling the slot during the main and early recovery phase of storms. For moderate storms, the injection process naturally becomes less effective at energies >=1 MeV, due to the longer wave acceleration times and additional precipitation loss from scattering by electromagnetic ion cyclotron waves. However, during extreme events when the plasmapause remains compressed for several days, conditions may occur to allow wave acceleration to multi-MeV energies at locations normally associated with the slot.

Thorne, R.; Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

Published by: Journal of Geophysical Research      Published on: 06/2007

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enhancement in 200\textendash700 keV electrons in the outer slot region near L = 3.3. Radial diffusion is much less effective but may partially contribute to the flux enhancement at lower L. Subsequent outward expansion of the plasmapause during the storm recovery phase effectively terminates local wave acceleration in the slot and prevents acceleration to energies higher than \~700 keV. A statistical analysis of energetic electron flux enhancements and wave and plasma properties over the entire CRRES mission supports the concept of local wave acceleration as a dominant process for refilling the slot during the main and early recovery phase of storms. For moderate storms, the injection process naturally becomes less effective at energies >=1 MeV, due to the longer wave acceleration times and additional precipitation loss from scattering by electromagnetic ion cyclotron waves. However, during extreme events when the plasmapause remains compressed for several days, conditions may occur to allow wave acceleration to multi-MeV energies at locations normally associated with the slot.

Thorne, R.; Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

Published by: Journal of Geophysical Research      Published on: 06/2007

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), as a potential source for refilling the slot at higher energies, is analyzed for observed conditions during the early recovery phase of the 10 October 1990 storm. We demonstrate that local acceleration, driven by observed chorus emissions, can account for the rapid enhancement in 200\textendash700 keV electrons in the outer slot region near L = 3.3. Radial diffusion is much less effective but may partially contribute to the flux enhancement at lower L. Subsequent outward expansion of the plasmapause during the storm recovery phase effectively terminates local wave acceleration in the slot and prevents acceleration to energies higher than \~700 keV. A statistical analysis of energetic electron flux enhancements and wave and plasma properties over the entire CRRES mission supports the concept of local wave acceleration as a dominant process for refilling the slot during the main and early recovery phase of storms. For moderate storms, the injection process naturally becomes less effective at energies >=1 MeV, due to the longer wave acceleration times and additional precipitation loss from scattering by electromagnetic ion cyclotron waves. However, during extreme events when the plasmapause remains compressed for several days, conditions may occur to allow wave acceleration to multi-MeV energies at locations normally associated with the slot.

Thorne, R.; Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

Published by: Journal of Geophysical Research      Published on: 06/2007

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

The effect of ULF compressional modes and field line resonances on relativistic electron dynamics

The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602\textendash8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed initial condition is calculated by assuming f remains constant along electron trajectories. The azimuthal variation in ULF wave structure is shown to have a profound effect on the electron dynamics once a threshold in azimuthal variation is exceeded. Electron energy changes occur that are significantly larger than the trapping width corresponding to the maximum wave amplitude. We show how this can be explained in terms of the overlap of multiple resonance islands, produced by the introduction of azimuthal amplitude variation. This anomalous energisation is characterised by performing parameter scans in the modulation amplitude ε and the wave electric field. A simple parametric model for the threshold is shown to give reasonable agreement with the threshold observed in the electron dynamics model. Above the threshold, the radial transport averaged over φ is shown to become diffusive in nature over a timescale of about 25 wave periods. The anomalous energisation described in this paper occurs over the first 15 wave periods, indicating the importance of convective transport in this process.

Degeling, A.; Rankin, R.; Kabin, K.; Marchand, R.; Mann, I.R.;

Published by: Planetary and Space Science      Published on: 04/2007

YEAR: 2007     DOI: 10.1016/j.pss.2006.04.039

Radial Transport

Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory

Radiation belt electrons can interact with various modes of plasma wave in their drift orbits about the Earth, including whistler-mode chorus outside the plasmasphere, and both whistler-mode hiss and electromagnetic ion cyclotron waves inside the plasmasphere. Electrons undergo gyroresonant diffusion in their interactions with these waves. To determine the timescales for electron momentum diffusion and pitch angle diffusion, we develop bounce-averaged quasi-linear resonant diffusion coefficients for field-aligned electromagnetic waves in a hydrogen or multi-ion (H+, He+, O+) plasma. We assume that the Earth\textquoterights magnetic field is dipolar and that the wave frequency spectrum is Gaussian. Evaluation of the diffusion coefficients requires the solution of a sixth-order polynomial equation for the resonant wave frequencies in the case of a multi-ion (H+, He+, O+) plasma, compared to the solution of a fourth-order polynomial equation for a hydrogen plasma. In some cases, diffusion coefficients for field-aligned waves can provide a valuable approximation for diffusion rates for oblique waves calculated using higher-order resonances. Bounce-averaged diffusion coefficients for field-aligned waves can be evaluated generally in minimal CPU time and can therefore be profitably incorporated into comprehensive kinetic radiation belt codes.

Summers, D.; Ni, Binbin; Meredith, Nigel;

Published by: Journal of Geophysical Research      Published on: 04/2007

YEAR: 2007     DOI: 10.1029/2006JA011801

Local Acceleration due to Wave-Particle Interaction

Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory

Radiation belt electrons can interact with various modes of plasma wave in their drift orbits about the Earth, including whistler-mode chorus outside the plasmasphere, and both whistler-mode hiss and electromagnetic ion cyclotron waves inside the plasmasphere. Electrons undergo gyroresonant diffusion in their interactions with these waves. To determine the timescales for electron momentum diffusion and pitch angle diffusion, we develop bounce-averaged quasi-linear resonant diffusion coefficients for field-aligned electromagnetic waves in a hydrogen or multi-ion (H+, He+, O+) plasma. We assume that the Earth\textquoterights magnetic field is dipolar and that the wave frequency spectrum is Gaussian. Evaluation of the diffusion coefficients requires the solution of a sixth-order polynomial equation for the resonant wave frequencies in the case of a multi-ion (H+, He+, O+) plasma, compared to the solution of a fourth-order polynomial equation for a hydrogen plasma. In some cases, diffusion coefficients for field-aligned waves can provide a valuable approximation for diffusion rates for oblique waves calculated using higher-order resonances. Bounce-averaged diffusion coefficients for field-aligned waves can be evaluated generally in minimal CPU time and can therefore be profitably incorporated into comprehensive kinetic radiation belt codes.

Summers, D.; Ni, Binbin; Meredith, Nigel;

Published by: Journal of Geophysical Research      Published on: 04/2007

YEAR: 2007     DOI: 10.1029/2006JA011801

Local Acceleration due to Wave-Particle Interaction

Review of radiation belt relativistic electron losses

We present a brief review of radiation belt electron losses which are vitally important for controlling the dynamics of the radiation belts. A historical overview of early observations is presented, followed by a brief description of important known electron loss mechanisms. We describe key theoretical results and observations related to pitch-angle scattering by resonant interaction with plasmaspheric hiss, whistler-mode chorus and electromagnetic ion cyclotron waves, and review recent work on magnetopause losses. In particular, we attempt to organize recent observational data by loss mechanism and their relative importance to the overall rate of loss. We conclude by suggesting future observational and theoretical work that would contribute to our understanding of this important area of radiation belt research.

MILLAN, R; THORNE, R;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 03/2007

YEAR: 2007     DOI: 10.1016/j.jastp.2006.06.019

Local Loss due to VLF/ELF/EMIC Waves

2006

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves

Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm

In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and asymmetric resonance modes (ω ≈ (m \textpm 1)ωd). ULF wave power spectral densities are obtained from a Fourier analysis of the electric and magnetic fields of the MHD simulation and are used in calculating the radial diffusion coefficients. The asymmetric diffusion coefficients are proportional to the magnetic field asymmetry, which is also calculated from the MHD field. The resulting diffusion coefficients vary with the radial coordinate L (the Roederer L-value) and with time during different phases of the storm. The last closed drift shell defines the location of the outer boundary. Both the location of the outer boundary and the value of the phase space density at the outer boundary are time-varying. The diffusion calculation simulates a 42-hour period during the 24\textendash26 September 1998 magnetic storm, starting just before the storm sudden commencement and ending in the late recovery phase. The differential flux calculated in the MHD particle simulation is converted to phase space density. Phase space densities in both simulations (diffusion and MHD particle) are functions of Roederer L-value for fixed first and second adiabatic invariants. The Roederer L-value is calculated using drift shell tracing in the MHD magnetic field, and particles have zero second invariant. The radial diffusion calculation reproduces the main features of the MHD particle simulation quite well. The symmetric resonance modes dominate the radial diffusion, especially in the inner and middle L region, while the asymmetric resonances are more important in the outer region. Using both symmetric and asymmetric terms gives a better result than using only one or the other and is better than using a simple power law diffusion coefficient. We find that it is important to specify the value of the phase space density on the outer boundary dynamically in order to get better agreement between the radial diffusion simulation and the MHD particle simulation.

Fei, Yue; Chan, Anthony; Elkington, Scot; Wiltberger, Michael;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2005JA011211

Radial Transport

Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm

In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and asymmetric resonance modes (ω ≈ (m \textpm 1)ωd). ULF wave power spectral densities are obtained from a Fourier analysis of the electric and magnetic fields of the MHD simulation and are used in calculating the radial diffusion coefficients. The asymmetric diffusion coefficients are proportional to the magnetic field asymmetry, which is also calculated from the MHD field. The resulting diffusion coefficients vary with the radial coordinate L (the Roederer L-value) and with time during different phases of the storm. The last closed drift shell defines the location of the outer boundary. Both the location of the outer boundary and the value of the phase space density at the outer boundary are time-varying. The diffusion calculation simulates a 42-hour period during the 24\textendash26 September 1998 magnetic storm, starting just before the storm sudden commencement and ending in the late recovery phase. The differential flux calculated in the MHD particle simulation is converted to phase space density. Phase space densities in both simulations (diffusion and MHD particle) are functions of Roederer L-value for fixed first and second adiabatic invariants. The Roederer L-value is calculated using drift shell tracing in the MHD magnetic field, and particles have zero second invariant. The radial diffusion calculation reproduces the main features of the MHD particle simulation quite well. The symmetric resonance modes dominate the radial diffusion, especially in the inner and middle L region, while the asymmetric resonances are more important in the outer region. Using both symmetric and asymmetric terms gives a better result than using only one or the other and is better than using a simple power law diffusion coefficient. We find that it is important to specify the value of the phase space density on the outer boundary dynamically in order to get better agreement between the radial diffusion simulation and the MHD particle simulation.

Fei, Yue; Chan, Anthony; Elkington, Scot; Wiltberger, Michael;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2005JA011211

Radial Transport

Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm

In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and asymmetric resonance modes (ω ≈ (m \textpm 1)ωd). ULF wave power spectral densities are obtained from a Fourier analysis of the electric and magnetic fields of the MHD simulation and are used in calculating the radial diffusion coefficients. The asymmetric diffusion coefficients are proportional to the magnetic field asymmetry, which is also calculated from the MHD field. The resulting diffusion coefficients vary with the radial coordinate L (the Roederer L-value) and with time during different phases of the storm. The last closed drift shell defines the location of the outer boundary. Both the location of the outer boundary and the value of the phase space density at the outer boundary are time-varying. The diffusion calculation simulates a 42-hour period during the 24\textendash26 September 1998 magnetic storm, starting just before the storm sudden commencement and ending in the late recovery phase. The differential flux calculated in the MHD particle simulation is converted to phase space density. Phase space densities in both simulations (diffusion and MHD particle) are functions of Roederer L-value for fixed first and second adiabatic invariants. The Roederer L-value is calculated using drift shell tracing in the MHD magnetic field, and particles have zero second invariant. The radial diffusion calculation reproduces the main features of the MHD particle simulation quite well. The symmetric resonance modes dominate the radial diffusion, especially in the inner and middle L region, while the asymmetric resonances are more important in the outer region. Using both symmetric and asymmetric terms gives a better result than using only one or the other and is better than using a simple power law diffusion coefficient. We find that it is important to specify the value of the phase space density on the outer boundary dynamically in order to get better agreement between the radial diffusion simulation and the MHD particle simulation.

Fei, Yue; Chan, Anthony; Elkington, Scot; Wiltberger, Michael;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2005JA011211

Radial Transport

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comparing CRRES observations with radial diffusion model simulations. Model-data comparison shows that nonadiabatic flux dropouts near geosynchronous orbit can be effectively propagated by the outward radial diffusion to L* = 4 and can account for the main phase depletions of outer radiation belt electron fluxes.

Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

Storm time evolution of the outer radiation belt: Transport and losses

During geomagnetic storms the magnetic field of the inner magnetosphere exhibits large-scale variations over timescales from minutes to days. Being mainly controlled by the magnetic field the motion of relativistic electrons of the outer radiation belt can be highly susceptible to its variations. This paper investigates evolution of the outer belt during the 7 September 2002 storm. Evolution of electron phase space density is calculated with the use of a test-particle simulation in storm time magnetic and electric fields. The results show that storm time intensification of the ring current produces a large impact on the belt. In contrast to the conventional Dst effect the dominant effects are nonadiabatic and lead to profound and irreversible transformations of the belt. The diamagnetic influence of the partial ring current leads to expansion of electron drift orbits such that their paths intersect the magnetopause leading to rapid electron losses. About 2.5 hr after the storm onset most of the electrons outside L = 5 are lost. The partial ring current pressure also leads to an electron trap in the dayside magnetosphere where electrons stay on closed dayside drift orbits for as long as 11 hours. These sequestered electrons are reinjected into the outer belt due to partial recovery of the ring current. The third adiabatic invariant of these electrons exhibits rapid jumps and changes sign. These jumps produce localized peaks in the L*-profile of electron phase space density which have previously been considered as an observable indication of local electron acceleration.

Ukhorskiy, A; Anderson, B.; Brandt, P.; Tsyganenko, N.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011690

Magnetopause Losses

Storm time evolution of the outer radiation belt: Transport and losses

During geomagnetic storms the magnetic field of the inner magnetosphere exhibits large-scale variations over timescales from minutes to days. Being mainly controlled by the magnetic field the motion of relativistic electrons of the outer radiation belt can be highly susceptible to its variations. This paper investigates evolution of the outer belt during the 7 September 2002 storm. Evolution of electron phase space density is calculated with the use of a test-particle simulation in storm time magnetic and electric fields. The results show that storm time intensification of the ring current produces a large impact on the belt. In contrast to the conventional Dst effect the dominant effects are nonadiabatic and lead to profound and irreversible transformations of the belt. The diamagnetic influence of the partial ring current leads to expansion of electron drift orbits such that their paths intersect the magnetopause leading to rapid electron losses. About 2.5 hr after the storm onset most of the electrons outside L = 5 are lost. The partial ring current pressure also leads to an electron trap in the dayside magnetosphere where electrons stay on closed dayside drift orbits for as long as 11 hours. These sequestered electrons are reinjected into the outer belt due to partial recovery of the ring current. The third adiabatic invariant of these electrons exhibits rapid jumps and changes sign. These jumps produce localized peaks in the L*-profile of electron phase space density which have previously been considered as an observable indication of local electron acceleration.

Ukhorskiy, A; Anderson, B.; Brandt, P.; Tsyganenko, N.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011690

Magnetopause Losses

Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields

In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth\textquoterights magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a function of the radial coordinate L in a dipolar magnetosphere; these calculations are then compared to the symmetric, electromagnetic radial diffusion coefficients for compressional, poloidal perturbations in the Earth\textquoterights magnetosphere. In the model the amplitude of the perturbation fields can be adjusted to represent realistic states of magnetospheric activity. Similarly, the azimuthal modulation of the fields can be adjusted to represent different azimuthal modes of fluctuations and the contribution to radial diffusion from each mode can be quantified. Two simulations of quiet-time magnetospheric variability are performed: in the first simulation, diffusion due to poloidal perturbations of mode number m=1 is calculated; in the second, the diffusion rates from multiple-mode (m=0 to m=8) perturbations are calculated. The numerical calculations of the diffusion coefficients derived from the particle orbits are found to agree with the corresponding theoretical estimates of the diffusion coefficient within a factor of two.

Sarris, T.; Li, X.; Temerin, M.;

Published by: Annales Geophysicae      Published on: 10/2006

YEAR: 2006     DOI: 10.5194/angeo-24-2583-2006

Radial Transport

Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23

\textquotedblleftKiller electrons,\textquotedblright enhanced fluxes of radiation belt electrons in the magnetosphere\textendashespecially those at geosynchronous orbit (GEO)\textendashwere an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993\textendash1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft anomalies and the \textquotedblleftpumping up\textquotedblright of the GEO electron fluxes gave rise to the picture that solar minimum did not provide a benign environment for space-based technologies as had been assumed by many. The decline to minimum of this current (23th) solar cycle has as yet to produce the same number of reported spacecraft anomalies as the previous cycle. This cycle has also failed to produce the periodic large increases in GEO electron fluxes (insofar as can be ascertained from the fluxes reported from the NOAA GOES spacecraft). Why is this? Is there less reporting by industry and government of anomalies than there was in the past? Or is it that there are not such high fluxes of energetic electrons as there were during the last approach to solar minimum? These are important questions for future space weather modeling and forecasting that need to be addressed by the space weather research and operations communities. A major cause of the enhanced energetic electrons during the declining phase of the 22nd cycle was the Where Are the \textquotedblleftKiller Electrons\textquotedblright of the Declining Phase of Solar Cycle 2... http://onlinelibrary.wiley.com/enhanced/doi/10.1029/2006SW000259/ 1 of 2 8/7/2014 9:30 AM Browse Publications Browse by Subject Resources Help About Us | Advertisers | Agents | Contact Us | Cookies Media | Privacy | Site Map | Terms \& Conditions Copyright \textcopyright 1999-2014 John Wiley \& Sons, Inc. All Rights Reserved. occurrence of quasiperiodic geomagnetic storms that arose throughout the interval of decline. The precise physical mechanism or mechanisms by which these storms produced the fluxes of killer electrons is still a matter of intense theoretical debate in the scientific literature. These storms were caused by high-speed solar wind streams in the interplanetary medium; that is, by the interactions of these streams with Earth\textquoterights magnetosphere. Is the interplanetary structure different during this decline to solar maximum than in the previous cycle? Or are there one or more other physical factors operating to seemingly lessen the effects of the solar wind and interplanetary magnetic field on Earth\textquoterights space environment? These are important questions for future space weather scientific research, research that could make major contributions to eventual practical applications. We encourage the space weather community to address with vigor and creativity in the next months the questions we raise here, prior to the beginning of the 24th solar cycle.

Baker, Daniel; Lanzerotti, Louis;

Published by: Space Weather      Published on: 07/2006

YEAR: 2006     DOI: 10.1029/2006SW000259

Radiation belts

Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23

\textquotedblleftKiller electrons,\textquotedblright enhanced fluxes of radiation belt electrons in the magnetosphere\textendashespecially those at geosynchronous orbit (GEO)\textendashwere an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993\textendash1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft anomalies and the \textquotedblleftpumping up\textquotedblright of the GEO electron fluxes gave rise to the picture that solar minimum did not provide a benign environment for space-based technologies as had been assumed by many. The decline to minimum of this current (23th) solar cycle has as yet to produce the same number of reported spacecraft anomalies as the previous cycle. This cycle has also failed to produce the periodic large increases in GEO electron fluxes (insofar as can be ascertained from the fluxes reported from the NOAA GOES spacecraft). Why is this? Is there less reporting by industry and government of anomalies than there was in the past? Or is it that there are not such high fluxes of energetic electrons as there were during the last approach to solar minimum? These are important questions for future space weather modeling and forecasting that need to be addressed by the space weather research and operations communities. A major cause of the enhanced energetic electrons during the declining phase of the 22nd cycle was the Where Are the \textquotedblleftKiller Electrons\textquotedblright of the Declining Phase of Solar Cycle 2... http://onlinelibrary.wiley.com/enhanced/doi/10.1029/2006SW000259/ 1 of 2 8/7/2014 9:30 AM Browse Publications Browse by Subject Resources Help About Us | Advertisers | Agents | Contact Us | Cookies Media | Privacy | Site Map | Terms \& Conditions Copyright \textcopyright 1999-2014 John Wiley \& Sons, Inc. All Rights Reserved. occurrence of quasiperiodic geomagnetic storms that arose throughout the interval of decline. The precise physical mechanism or mechanisms by which these storms produced the fluxes of killer electrons is still a matter of intense theoretical debate in the scientific literature. These storms were caused by high-speed solar wind streams in the interplanetary medium; that is, by the interactions of these streams with Earth\textquoterights magnetosphere. Is the interplanetary structure different during this decline to solar maximum than in the previous cycle? Or are there one or more other physical factors operating to seemingly lessen the effects of the solar wind and interplanetary magnetic field on Earth\textquoterights space environment? These are important questions for future space weather scientific research, research that could make major contributions to eventual practical applications. We encourage the space weather community to address with vigor and creativity in the next months the questions we raise here, prior to the beginning of the 24th solar cycle.

Baker, Daniel; Lanzerotti, Louis;

Published by: Space Weather      Published on: 07/2006

YEAR: 2006     DOI: 10.1029/2006SW000259

Radiation belts

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on CRRES observations. The resulting timescales suggest that pitch angle scattering by plasmaspheric hiss propagating at small or intermediate wave normal angles is responsible for electron loss over a wide range of energies and L shells. The region where hiss dominates loss is energy-dependent, ranging from 3.5 <= L <= 5.0 at 214 keV to 3.0 <= L <= 4.0 at 1.09 MeV. Plasmaspheric hiss at large wave normal angles does not contribute significantly to the loss rates. At E = 1.09 MeV the loss timescales are overestimated by a factor of \~5 for 4.5 <= L <= 5.0. We suggest that resonant wave-particle interactions with EMIC waves, which become important at MeV energies for larger L (L > \~4.5), may play a significant role in this region.

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

Phase space density analysis of the outer radiation belt energetic electron dynamics

We present an analysis of the electron phase space density in the Earth\textquoterights outer radiation belt during three magnetically disturbed periods to determine the likely roles of inward radial diffusion and local acceleration in the energization of electrons to relativistic energies. During the recovery phase of the 9 October 1990 storm and the period of prolonged substorms between 11 and 16 September 1990, the relativistic electron phase space density increases substantially and peaks in the phase space density occur in the region 4.0 < L* < 5.5 for values of the first adiabatic invariant, M >= 550 MeV/G, corresponding to energies, E > \~0.8 MeV. The peaks in the phase space density are associated with prolonged substorm activity, enhanced chorus amplitudes, and predominantly low values of the ratio between the electron plasma frequency, fpe, and the electron gyrofrequency, fce (fpe/fce < \~4). The data provide further evidence for a local wave acceleration process in addition to radial diffusion operating in the heart of the outer radiation belt. During the recovery phase of the 9 October 1990 storm the peaks are more pronounced at large M (550 MeV/G) and large Kaufmann K (0.11 equation imageRE) than large M (700 MeV/G) and small K (0.025 equation imageRE), which suggests that radial diffusion is more effective below about 0.7 MeV for 5.0 < L* < 5.5 during this period. At low M (M <= 250 MeV/G), corresponding to energies, E < \~0.8 MeV, there is no evidence for a peak in phase space density and the data are more consistent with inward radial diffusion and losses to the atmosphere by pitch angle scattering. During the 26 August 1990 storm there is a net loss in the relativistic electron phase space density for 3.3 < L* < 6.0. At low M (M <= 250 MeV/G) the phase space density decreases by almost a constant factor and the gradient remains positive for all L*, but at high M (M >= 550 MeV/G) the decrease in phase space density is greater at larger L* and the gradient changes from positive to negative. The data show that it is possible to have inward radial diffusion at low energies and outward radial diffusion at higher energies, which would fill the outer radiation belt.

Iles, Roger; Meredith, Nigel; Fazakerley, Andrew; Horne, Richard;

Published by: Journal of Geophysical Research      Published on: 03/2006

YEAR: 2006     DOI: 10.1029/2005JA011206

Local Acceleration due to Wave-Particle Interaction

Phase space density analysis of the outer radiation belt energetic electron dynamics

We present an analysis of the electron phase space density in the Earth\textquoterights outer radiation belt during three magnetically disturbed periods to determine the likely roles of inward radial diffusion and local acceleration in the energization of electrons to relativistic energies. During the recovery phase of the 9 October 1990 storm and the period of prolonged substorms between 11 and 16 September 1990, the relativistic electron phase space density increases substantially and peaks in the phase space density occur in the region 4.0 < L* < 5.5 for values of the first adiabatic invariant, M >= 550 MeV/G, corresponding to energies, E > \~0.8 MeV. The peaks in the phase space density are associated with prolonged substorm activity, enhanced chorus amplitudes, and predominantly low values of the ratio between the electron plasma frequency, fpe, and the electron gyrofrequency, fce (fpe/fce < \~4). The data provide further evidence for a local wave acceleration process in addition to radial diffusion operating in the heart of the outer radiation belt. During the recovery phase of the 9 October 1990 storm the peaks are more pronounced at large M (550 MeV/G) and large Kaufmann K (0.11 equation imageRE) than large M (700 MeV/G) and small K (0.025 equation imageRE), which suggests that radial diffusion is more effective below about 0.7 MeV for 5.0 < L* < 5.5 during this period. At low M (M <= 250 MeV/G), corresponding to energies, E < \~0.8 MeV, there is no evidence for a peak in phase space density and the data are more consistent with inward radial diffusion and losses to the atmosphere by pitch angle scattering. During the 26 August 1990 storm there is a net loss in the relativistic electron phase space density for 3.3 < L* < 6.0. At low M (M <= 250 MeV/G) the phase space density decreases by almost a constant factor and the gradient remains positive for all L*, but at high M (M >= 550 MeV/G) the decrease in phase space density is greater at larger L* and the gradient changes from positive to negative. The data show that it is possible to have inward radial diffusion at low energies and outward radial diffusion at higher energies, which would fill the outer radiation belt.

Iles, Roger; Meredith, Nigel; Fazakerley, Andrew; Horne, Richard;

Published by: Journal of Geophysical Research      Published on: 03/2006

YEAR: 2006     DOI: 10.1029/2005JA011206

Local Acceleration due to Wave-Particle Interaction

Phase space density analysis of the outer radiation belt energetic electron dynamics

We present an analysis of the electron phase space density in the Earth\textquoterights outer radiation belt during three magnetically disturbed periods to determine the likely roles of inward radial diffusion and local acceleration in the energization of electrons to relativistic energies. During the recovery phase of the 9 October 1990 storm and the period of prolonged substorms between 11 and 16 September 1990, the relativistic electron phase space density increases substantially and peaks in the phase space density occur in the region 4.0 < L* < 5.5 for values of the first adiabatic invariant, M >= 550 MeV/G, corresponding to energies, E > \~0.8 MeV. The peaks in the phase space density are associated with prolonged substorm activity, enhanced chorus amplitudes, and predominantly low values of the ratio between the electron plasma frequency, fpe, and the electron gyrofrequency, fce (fpe/fce < \~4). The data provide further evidence for a local wave acceleration process in addition to radial diffusion operating in the heart of the outer radiation belt. During the recovery phase of the 9 October 1990 storm the peaks are more pronounced at large M (550 MeV/G) and large Kaufmann K (0.11 equation imageRE) than large M (700 MeV/G) and small K (0.025 equation imageRE), which suggests that radial diffusion is more effective below about 0.7 MeV for 5.0 < L* < 5.5 during this period. At low M (M <= 250 MeV/G), corresponding to energies, E < \~0.8 MeV, there is no evidence for a peak in phase space density and the data are more consistent with inward radial diffusion and losses to the atmosphere by pitch angle scattering. During the 26 August 1990 storm there is a net loss in the relativistic electron phase space density for 3.3 < L* < 6.0. At low M (M <= 250 MeV/G) the phase space density decreases by almost a constant factor and the gradient remains positive for all L*, but at high M (M >= 550 MeV/G) the decrease in phase space density is greater at larger L* and the gradient changes from positive to negative. The data show that it is possible to have inward radial diffusion at low energies and outward radial diffusion at higher energies, which would fill the outer radiation belt.

Iles, Roger; Meredith, Nigel; Fazakerley, Andrew; Horne, Richard;

Published by: Journal of Geophysical Research      Published on: 03/2006

YEAR: 2006     DOI: 10.1029/2005JA011206

Local Acceleration due to Wave-Particle Interaction

Phase space density analysis of the outer radiation belt energetic electron dynamics

We present an analysis of the electron phase space density in the Earth\textquoterights outer radiation belt during three magnetically disturbed periods to determine the likely roles of inward radial diffusion and local acceleration in the energization of electrons to relativistic energies. During the recovery phase of the 9 October 1990 storm and the period of prolonged substorms between 11 and 16 September 1990, the relativistic electron phase space density increases substantially and peaks in the phase space density occur in the region 4.0 < L* < 5.5 for values of the first adiabatic invariant, M >= 550 MeV/G, corresponding to energies, E > \~0.8 MeV. The peaks in the phase space density are associated with prolonged substorm activity, enhanced chorus amplitudes, and predominantly low values of the ratio between the electron plasma frequency, fpe, and the electron gyrofrequency, fce (fpe/fce < \~4). The data provide further evidence for a local wave acceleration process in addition to radial diffusion operating in the heart of the outer radiation belt. During the recovery phase of the 9 October 1990 storm the peaks are more pronounced at large M (550 MeV/G) and large Kaufmann K (0.11 equation imageRE) than large M (700 MeV/G) and small K (0.025 equation imageRE), which suggests that radial diffusion is more effective below about 0.7 MeV for 5.0 < L* < 5.5 during this period. At low M (M <= 250 MeV/G), corresponding to energies, E < \~0.8 MeV, there is no evidence for a peak in phase space density and the data are more consistent with inward radial diffusion and losses to the atmosphere by pitch angle scattering. During the 26 August 1990 storm there is a net loss in the relativistic electron phase space density for 3.3 < L* < 6.0. At low M (M <= 250 MeV/G) the phase space density decreases by almost a constant factor and the gradient remains positive for all L*, but at high M (M >= 550 MeV/G) the decrease in phase space density is greater at larger L* and the gradient changes from positive to negative. The data show that it is possible to have inward radial diffusion at low energies and outward radial diffusion at higher energies, which would fill the outer radiation belt.

Iles, Roger; Meredith, Nigel; Fazakerley, Andrew; Horne, Richard;

Published by: Journal of Geophysical Research      Published on: 03/2006

YEAR: 2006     DOI: 10.1029/2005JA011206

Local Acceleration due to Wave-Particle Interaction

A review of ULF interactions with radiation belt electrons

Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF variations and the radiation belts may result in (or require) pitch angle scattering, or may conserve the first two adiabatic invariants of particle motion. Of the latter class of interactions, radial diffusion describes the result when ULF variations lead to stochastic motion among the particle populations, and has been studied extensively as a description of radial transport within the belts. Rates of radial diffusion depend strongly on the characteristics of the driving ULF waves. This work is intended as a non- exhaustive review of radiation belt interactions with ULF waves, outlining the cur- rent theories and methods in studying the interaction, and describing pertinent wave properties

Elkington, Scot;

Published by:       Published on:

YEAR: 2006     DOI: 10.1029/169GM12

Radial Transport

2005

Impact of toroidal ULF waves on the outer radiation belt electrons

Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3\textendash5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. The goal of this paper is to analyze the impact of toroidal ULF waves on radiation belt electrons. The study is based on direct measurements of ULF electric fields on the CRRES spacecraft. We show that the electric fields of inner magnetospheric toroidal ULF waves exhibit high asymmetry in magnetic local time and have narrow-band frequency spectra. Such narrow-band waves can induce radial diffusion of energetic electrons, if an extrinsic stochasticity is introduced in the system. The quasi-periodic variations in the solar wind dynamic pressure are identified as a possible source of extrinsic stochasticity. In the asymmetric magnetic field, drifting electrons can interact with both azimuthal and radial electric field components. We derive analytically and then calculate numerically the diffusion rates associated with azimuthal and radial electric field components of the waves. It is shown that even under highly disturbed geomagnetic conditions, when the background field asymmetry is large, the diffusion rates due to the radial field component are small. At the same time, the resonant scattering of energetic electrons by the azimuthal electric field of the waves provides an efficient form of radial diffusion and therefore can play an important role in the dynamics of the outer radiation belt.

Ukhorskiy, A; Takahashi, K; Anderson, B.; Korth, H.;

Published by: Journal of Geophysical Research      Published on: 10/2005

YEAR: 2005     DOI: 10.1029/2005JA011017

Radial Transport

Timescale for MeV electron microburst loss during geomagnetic storms

Energetic electrons in the outer radiation belt can resonate with intense bursts of whistler-mode chorus emission leading to microburst precipitation into the atmosphere. The timescale for removal of outer zone MeV electrons during the main phase of the October 1998 magnetic storm has been computed by comparing the rate of microburst loss observed on SAMPEX with trapped flux levels observed on Polar. Effective lifetimes are comparable to a day and are relatively independent of L shell. The lifetimes have also been evaluated by theoretical calculations based on quasi-linear scattering by field-aligned waves. Agreement with the observations requires average wide-band wave amplitudes comparable to 100 pT, which is consistent with the intensity of chorus emissions observed under active conditions. MeV electron scattering is most efficient during first-order cyclotron resonance with chorus emissions at geomagnetic latitudes above 30 degrees. Consequently, the zone of MeV microbursts tends to maximize in the prenoon (0400\textendash1200 MLT) sector, since nightside chorus is more strongly confined to the equator.

Thorne, R.; O\textquoterightBrien, T.; Shprits, Y; Summers, D.; Horne, R.;

Published by: Journal of Geophysical Research      Published on: 09/2005

YEAR: 2005     DOI: 10.1029/2004JA010882

Local Loss due to VLF/ELF/EMIC Waves

Timescale for MeV electron microburst loss during geomagnetic storms

Energetic electrons in the outer radiation belt can resonate with intense bursts of whistler-mode chorus emission leading to microburst precipitation into the atmosphere. The timescale for removal of outer zone MeV electrons during the main phase of the October 1998 magnetic storm has been computed by comparing the rate of microburst loss observed on SAMPEX with trapped flux levels observed on Polar. Effective lifetimes are comparable to a day and are relatively independent of L shell. The lifetimes have also been evaluated by theoretical calculations based on quasi-linear scattering by field-aligned waves. Agreement with the observations requires average wide-band wave amplitudes comparable to 100 pT, which is consistent with the intensity of chorus emissions observed under active conditions. MeV electron scattering is most efficient during first-order cyclotron resonance with chorus emissions at geomagnetic latitudes above 30 degrees. Consequently, the zone of MeV microbursts tends to maximize in the prenoon (0400\textendash1200 MLT) sector, since nightside chorus is more strongly confined to the equator.

Thorne, R.; O\textquoterightBrien, T.; Shprits, Y; Summers, D.; Horne, R.;

Published by: Journal of Geophysical Research      Published on: 09/2005

YEAR: 2005     DOI: 10.1029/2004JA010882

Local Loss due to VLF/ELF/EMIC Waves



  79      80      81      82      83      84