Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 4101 through 4150


2000

Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm

In this paper we study the variation of the relativistic electron fluxes in the Earth\textquoterights outer radiation belt during the March 26, 1995, magnetic storm. Using observations by the radiation environment monitor (REM) on board the space technology research vehicle (STRV-Ib), we discuss the flux decrease and possible loss of relativistic electrons during the storm main phase. In order to explain the observations we have performed fully adiabatic and guiding center simulations for relativistic equatorial electrons in the nonstationary Tsygarienko96 magnetospheric magnetic field model. In our simulations the drift of electrons through the magnetopause was considered as a loss process. We present our model results and discuss their dependence on the magnetospheric magnetic and electric field model, as well as on the prestorm fluxes used in the simulations.

Desorgher, L.; ühler, P.; Zehnder, A.; ückiger, E.;

Published by: Journal of Geophysical Research      Published on: 09/2000

YEAR: 2000     DOI: 10.1029/2000JA900060

Magnetopause Losses

Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm

In this paper we study the variation of the relativistic electron fluxes in the Earth\textquoterights outer radiation belt during the March 26, 1995, magnetic storm. Using observations by the radiation environment monitor (REM) on board the space technology research vehicle (STRV-Ib), we discuss the flux decrease and possible loss of relativistic electrons during the storm main phase. In order to explain the observations we have performed fully adiabatic and guiding center simulations for relativistic equatorial electrons in the nonstationary Tsygarienko96 magnetospheric magnetic field model. In our simulations the drift of electrons through the magnetopause was considered as a loss process. We present our model results and discuss their dependence on the magnetospheric magnetic and electric field model, as well as on the prestorm fluxes used in the simulations.

Desorgher, L.; ühler, P.; Zehnder, A.; ückiger, E.;

Published by: Journal of Geophysical Research      Published on: 09/2000

YEAR: 2000     DOI: 10.1029/2000JA900060

Magnetopause Losses

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere are investigated using data from the CRRES satellite. Equatorial electron distributions and concomitant wave spectra outside the plasmapause on the nightside of the Earth are studied as a function of time since injection determined from the auroral-electrojet index (AE). The electron cyclotron harmonic (ECH) wave amplitudes are shown to be very sensitive to small modeling errors in the location of the magnetic equator. They are best understood at the ECH equator, defined by the local maximum in the ECH wave activity in the vicinity of the nominal magnetic equator, suggesting that the ECH equator is a better measure of the location of the true equator. Strong ECH and whistler mode wave amplitudes are associated with the injected distributions and at the ECH equator, in the region 6.0 <= L < 7.0, exponential fits reveal wave amplitude decay time constants of 6.3\textpm1.2 and 4.6\textpm0.7 hours, respectively. Pancake electron distributions are seen to develop from injected distributions that are nearly isotropic in velocity space and, in this region, are seen to form on a similar timescale of approximately 4 hours suggesting that both wave types are involved in their production. The timescale for pancake production and wave decay is comparable with the average time interval between substorm events so that the wave-particle interactions are almost continually present in this region leading to a continual supply of electrons to power the diffuse aurora. In the region 3.8 <= L < 6.0 the timescale for wave decay at the ECH equator is 2.3 \textpm 0.6 and 1.1 \textpm 0.2 hours for ECH waves and whistler mode waves respectively, although the pancakes in this region show no clear evolution as a function of time.

Meredith, Nigel; Horne, Richard; Johnstone, Alan; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2000

YEAR: 2000     DOI: 10.1029/2000JA900010

Substorm Injections

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere are investigated using data from the CRRES satellite. Equatorial electron distributions and concomitant wave spectra outside the plasmapause on the nightside of the Earth are studied as a function of time since injection determined from the auroral-electrojet index (AE). The electron cyclotron harmonic (ECH) wave amplitudes are shown to be very sensitive to small modeling errors in the location of the magnetic equator. They are best understood at the ECH equator, defined by the local maximum in the ECH wave activity in the vicinity of the nominal magnetic equator, suggesting that the ECH equator is a better measure of the location of the true equator. Strong ECH and whistler mode wave amplitudes are associated with the injected distributions and at the ECH equator, in the region 6.0 <= L < 7.0, exponential fits reveal wave amplitude decay time constants of 6.3\textpm1.2 and 4.6\textpm0.7 hours, respectively. Pancake electron distributions are seen to develop from injected distributions that are nearly isotropic in velocity space and, in this region, are seen to form on a similar timescale of approximately 4 hours suggesting that both wave types are involved in their production. The timescale for pancake production and wave decay is comparable with the average time interval between substorm events so that the wave-particle interactions are almost continually present in this region leading to a continual supply of electrons to power the diffuse aurora. In the region 3.8 <= L < 6.0 the timescale for wave decay at the ECH equator is 2.3 \textpm 0.6 and 1.1 \textpm 0.2 hours for ECH waves and whistler mode waves respectively, although the pancakes in this region show no clear evolution as a function of time.

Meredith, Nigel; Horne, Richard; Johnstone, Alan; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2000

YEAR: 2000     DOI: 10.1029/2000JA900010

Substorm Injections

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere are investigated using data from the CRRES satellite. Equatorial electron distributions and concomitant wave spectra outside the plasmapause on the nightside of the Earth are studied as a function of time since injection determined from the auroral-electrojet index (AE). The electron cyclotron harmonic (ECH) wave amplitudes are shown to be very sensitive to small modeling errors in the location of the magnetic equator. They are best understood at the ECH equator, defined by the local maximum in the ECH wave activity in the vicinity of the nominal magnetic equator, suggesting that the ECH equator is a better measure of the location of the true equator. Strong ECH and whistler mode wave amplitudes are associated with the injected distributions and at the ECH equator, in the region 6.0 <= L < 7.0, exponential fits reveal wave amplitude decay time constants of 6.3\textpm1.2 and 4.6\textpm0.7 hours, respectively. Pancake electron distributions are seen to develop from injected distributions that are nearly isotropic in velocity space and, in this region, are seen to form on a similar timescale of approximately 4 hours suggesting that both wave types are involved in their production. The timescale for pancake production and wave decay is comparable with the average time interval between substorm events so that the wave-particle interactions are almost continually present in this region leading to a continual supply of electrons to power the diffuse aurora. In the region 3.8 <= L < 6.0 the timescale for wave decay at the ECH equator is 2.3 \textpm 0.6 and 1.1 \textpm 0.2 hours for ECH waves and whistler mode waves respectively, although the pancakes in this region show no clear evolution as a function of time.

Meredith, Nigel; Horne, Richard; Johnstone, Alan; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2000

YEAR: 2000     DOI: 10.1029/2000JA900010

Substorm Injections

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere are investigated using data from the CRRES satellite. Equatorial electron distributions and concomitant wave spectra outside the plasmapause on the nightside of the Earth are studied as a function of time since injection determined from the auroral-electrojet index (AE). The electron cyclotron harmonic (ECH) wave amplitudes are shown to be very sensitive to small modeling errors in the location of the magnetic equator. They are best understood at the ECH equator, defined by the local maximum in the ECH wave activity in the vicinity of the nominal magnetic equator, suggesting that the ECH equator is a better measure of the location of the true equator. Strong ECH and whistler mode wave amplitudes are associated with the injected distributions and at the ECH equator, in the region 6.0 <= L < 7.0, exponential fits reveal wave amplitude decay time constants of 6.3\textpm1.2 and 4.6\textpm0.7 hours, respectively. Pancake electron distributions are seen to develop from injected distributions that are nearly isotropic in velocity space and, in this region, are seen to form on a similar timescale of approximately 4 hours suggesting that both wave types are involved in their production. The timescale for pancake production and wave decay is comparable with the average time interval between substorm events so that the wave-particle interactions are almost continually present in this region leading to a continual supply of electrons to power the diffuse aurora. In the region 3.8 <= L < 6.0 the timescale for wave decay at the ECH equator is 2.3 \textpm 0.6 and 1.1 \textpm 0.2 hours for ECH waves and whistler mode waves respectively, although the pancakes in this region show no clear evolution as a function of time.

Meredith, Nigel; Horne, Richard; Johnstone, Alan; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2000

YEAR: 2000     DOI: 10.1029/2000JA900010

Substorm Injections

Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm

The response of outer radiation belt relativistic electrons to the October 9, 1990, magnetic storm is analyzed in detail using a radial diffusion model and data from the Combined Release and Radiation Effects Satellite (CRRES) and the Los Alamos National Laboratory (LANL) geosynchronous satellite 1989-046. Electron measurements are expressed in terms of phase space density as a function of the three adiabatic invariants determined from CRRES magnetic field data and the Tsyganenko 1989 Kp-dependent magnetic field model. The radial diffusion model is implemented with a time-dependent radial diffusion coefficient parameterized by Kp, and a time-dependent outer boundary condition scaled by geosynchronous electron data. The results show that radial diffusion propagates outer boundary variations into the heart of the outer radiation belt, accounting for both significant decreases and increases in the <1 MeV electron flux throughout that region. It is further shown that the gradual increase throughout the recovery phase of the >1 MeV electrons is inconsistent with the radial diffusion model given the parameter regime chosen for this study. Greatly enhanced whistler chorus waves observed by CRRES throughout the recovery phase suggest that a possible explanation for the inconsistency may be electron acceleration via wave-particle interaction.

Brautigam, D.; Albert, J.;

Published by: Journal of Geophysical Research      Published on: 01/2000

YEAR: 2000     DOI: 10.1029/1999JA900344

Radial Transport

1999

Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations

There has been increasing evidence that Pc-5 ULF oscillations play a fundamental role in the dynamics of outer zone electrons. In this work we examine the adiabatic response of electrons to toroidal-mode Pc-5 field line resonances using a simplified magnetic field model. We find that electrons can be adiabatically accelerated through a drift-resonant interaction with the waves, and present expressions describing the resonance condition and half-width for resonant interaction. The presence of magnetospheric convection electric fields is seen to increase the rate of resonant energization, and allow bulk acceleration of radiation belt electrons. Conditions leading to the greatest rate of acceleration in the proposed mechanism, a nonaxisymmetric magnetic field, superimposed toroidal oscillations, and strong convection electric fields, are likely to prevail during storms associated with high solar wind speeds.

Elkington, Scot; Hudson, M.; Chan, Anthony;

Published by: Geophysical Research Letters      Published on: 11/1999

YEAR: 1999     DOI: 10.1029/1999GL003659

Radial Transport

Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations

The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relativistic electron flux increase occurred over several hours for the January event, during a period of prolonged southward IMF Bz more rapidly than the 1-2 day delay typical of flux increases driven by solar wind high speed stream interactions. Simulations of the January event captured the flux

Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.;

Published by:       Published on:

YEAR: 1999     DOI: 10.1029/GM10910.1029/GM109p0171

Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations

The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relativistic electron flux increase occurred over several hours for the January event, during a period of prolonged southward IMF Bz more rapidly than the 1-2 day delay typical of flux increases driven by solar wind high speed stream interactions. Simulations of the January event captured the flux

Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.;

Published by:       Published on:

YEAR: 1999     DOI: 10.1029/GM10910.1029/GM109p0171

1998

Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere

Resonant diffusion curves for electron cyclotron resonance with field-aligned electromagnetic R mode and L mode electromagnetic ion cyclotron (EMIC) waves are constructed using a fully relativistic treatment. Analytical solutions are derived for the case of a single-ion plasma, and a numerical scheme is developed for the more realistic case of a multi-ion plasma. Diffusion curves are presented, for plasma parameters representative of the Earth\textquoterights magnetosphere at locations both inside and outside the plasmapause. The results obtained indicate minimal electron energy change along the diffusion curves for resonant interaction with L mode waves. Intense storm time EMIC waves are therefore ineffective for electron stochastic acceleration, although these waves could induce rapid pitch angle scattering for ≳ 1 MeV electrons near the duskside plasmapause. In contrast, significant energy change can occur along the diffusion curves for interaction between resonant electrons and whistler (R mode) waves. The energy change is most pronounced in regions of low plasma density. This suggests that whistler mode waves could provide a viable mechanism for electron acceleration from energies near 100 keV to above 1 MeV in the region outside the plasmapause during the recovery phase of geomagnetic storms. A model is proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.

Summers, D.; Thorne, Richard; Xiao, Fuliang;

Published by: Journal of Geophysical Research      Published on: 09/1998

YEAR: 1998     DOI: 10.1029/98JA01740

Local Acceleration due to Wave-Particle Interaction

Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere

Resonant diffusion curves for electron cyclotron resonance with field-aligned electromagnetic R mode and L mode electromagnetic ion cyclotron (EMIC) waves are constructed using a fully relativistic treatment. Analytical solutions are derived for the case of a single-ion plasma, and a numerical scheme is developed for the more realistic case of a multi-ion plasma. Diffusion curves are presented, for plasma parameters representative of the Earth\textquoterights magnetosphere at locations both inside and outside the plasmapause. The results obtained indicate minimal electron energy change along the diffusion curves for resonant interaction with L mode waves. Intense storm time EMIC waves are therefore ineffective for electron stochastic acceleration, although these waves could induce rapid pitch angle scattering for ≳ 1 MeV electrons near the duskside plasmapause. In contrast, significant energy change can occur along the diffusion curves for interaction between resonant electrons and whistler (R mode) waves. The energy change is most pronounced in regions of low plasma density. This suggests that whistler mode waves could provide a viable mechanism for electron acceleration from energies near 100 keV to above 1 MeV in the region outside the plasmapause during the recovery phase of geomagnetic storms. A model is proposed to account for the observed variations in the flux and pitch angle distribution of relativistic electrons during geomagnetic storms by combining pitch angle scattering by intense EMIC waves and energy diffusion during cyclotron resonant interaction with whistler mode chorus outside the plasmasphere.

Summers, D.; Thorne, Richard; Xiao, Fuliang;

Published by: Journal of Geophysical Research      Published on: 09/1998

YEAR: 1998     DOI: 10.1029/98JA01740

Local Acceleration due to Wave-Particle Interaction

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for electrons prior to and during the flux rises observed in the near tail region of the model at all energies considered (\~ 100 eV to 1 MeV). The test particle model reproduces major observed characteristics: a fast flux rise, comparable to that of the ions, and the existence of five categories of dispersionless events, typical for observations at different local times. They consist of dispersionless injections of ions or electrons without accompanying injections of the other species, delayed electron injections and delayed ion injections, and simultaneous two-species injections. As postulated from observations [Birn et al., 1997a], these categories can be attributed to a dawn-dusk displacement of the ion and electron injection boundaries in combination with an earthward motion or expansion. The simulated electron injection region extends farther toward dusk at lower energies (say, below 40 keV) than at higher energies. This explains the existence of observed energetic ion injections that are accompanied by electron flux increases at the lower energies but not by an energetic electron injection at energies above 50 keV. The simulated distributions show that flux increases are limited in energy, as observed. The reason for this limitation and for the differences between the injection regions at different energies is the localization in the dawn-dusk direction of the tail collapse and the associated cross-tail electric field, in combination with a difference in the relative importance of E \texttimes B drift and gradient drifts at different energies. The results demonstrate that the collapsing field region earthward of the neutral line appears to be more significant than the neutral line itself for the acceleration of electrons, particularly for the initial rise of the fluxes and the injection boundary. This is similar to the result obtained for test ions [Birn et al., 1997b].

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

Published by: Journal of Geophysical Research      Published on: 05/1998

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for electrons prior to and during the flux rises observed in the near tail region of the model at all energies considered (\~ 100 eV to 1 MeV). The test particle model reproduces major observed characteristics: a fast flux rise, comparable to that of the ions, and the existence of five categories of dispersionless events, typical for observations at different local times. They consist of dispersionless injections of ions or electrons without accompanying injections of the other species, delayed electron injections and delayed ion injections, and simultaneous two-species injections. As postulated from observations [Birn et al., 1997a], these categories can be attributed to a dawn-dusk displacement of the ion and electron injection boundaries in combination with an earthward motion or expansion. The simulated electron injection region extends farther toward dusk at lower energies (say, below 40 keV) than at higher energies. This explains the existence of observed energetic ion injections that are accompanied by electron flux increases at the lower energies but not by an energetic electron injection at energies above 50 keV. The simulated distributions show that flux increases are limited in energy, as observed. The reason for this limitation and for the differences between the injection regions at different energies is the localization in the dawn-dusk direction of the tail collapse and the associated cross-tail electric field, in combination with a difference in the relative importance of E \texttimes B drift and gradient drifts at different energies. The results demonstrate that the collapsing field region earthward of the neutral line appears to be more significant than the neutral line itself for the acceleration of electrons, particularly for the initial rise of the fluxes and the injection boundary. This is similar to the result obtained for test ions [Birn et al., 1997b].

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

Published by: Journal of Geophysical Research      Published on: 05/1998

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for electrons prior to and during the flux rises observed in the near tail region of the model at all energies considered (\~ 100 eV to 1 MeV). The test particle model reproduces major observed characteristics: a fast flux rise, comparable to that of the ions, and the existence of five categories of dispersionless events, typical for observations at different local times. They consist of dispersionless injections of ions or electrons without accompanying injections of the other species, delayed electron injections and delayed ion injections, and simultaneous two-species injections. As postulated from observations [Birn et al., 1997a], these categories can be attributed to a dawn-dusk displacement of the ion and electron injection boundaries in combination with an earthward motion or expansion. The simulated electron injection region extends farther toward dusk at lower energies (say, below 40 keV) than at higher energies. This explains the existence of observed energetic ion injections that are accompanied by electron flux increases at the lower energies but not by an energetic electron injection at energies above 50 keV. The simulated distributions show that flux increases are limited in energy, as observed. The reason for this limitation and for the differences between the injection regions at different energies is the localization in the dawn-dusk direction of the tail collapse and the associated cross-tail electric field, in combination with a difference in the relative importance of E \texttimes B drift and gradient drifts at different energies. The results demonstrate that the collapsing field region earthward of the neutral line appears to be more significant than the neutral line itself for the acceleration of electrons, particularly for the initial rise of the fluxes and the injection boundary. This is similar to the result obtained for test ions [Birn et al., 1997b].

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

Published by: Journal of Geophysical Research      Published on: 05/1998

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for electrons prior to and during the flux rises observed in the near tail region of the model at all energies considered (\~ 100 eV to 1 MeV). The test particle model reproduces major observed characteristics: a fast flux rise, comparable to that of the ions, and the existence of five categories of dispersionless events, typical for observations at different local times. They consist of dispersionless injections of ions or electrons without accompanying injections of the other species, delayed electron injections and delayed ion injections, and simultaneous two-species injections. As postulated from observations [Birn et al., 1997a], these categories can be attributed to a dawn-dusk displacement of the ion and electron injection boundaries in combination with an earthward motion or expansion. The simulated electron injection region extends farther toward dusk at lower energies (say, below 40 keV) than at higher energies. This explains the existence of observed energetic ion injections that are accompanied by electron flux increases at the lower energies but not by an energetic electron injection at energies above 50 keV. The simulated distributions show that flux increases are limited in energy, as observed. The reason for this limitation and for the differences between the injection regions at different energies is the localization in the dawn-dusk direction of the tail collapse and the associated cross-tail electric field, in combination with a difference in the relative importance of E \texttimes B drift and gradient drifts at different energies. The results demonstrate that the collapsing field region earthward of the neutral line appears to be more significant than the neutral line itself for the acceleration of electrons, particularly for the initial rise of the fluxes and the injection boundary. This is similar to the result obtained for test ions [Birn et al., 1997b].

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

Published by: Journal of Geophysical Research      Published on: 05/1998

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

Electron scattering loss in Earth\textquoterights inner magnetosphere 1. Dominant physical processes

Pitch angle diffusion rates due to Coulomb collisions and resonant interactions with plasmaspheric hiss, lightning-induced whistlers and anthropogenic VLF transmissions are computed for inner magnetospheric electrons. The bounce-averaged, quasi-linear pitch angle diffusion coefficients are input into a pure pitch angle diffusion equation to obtain L and energy dependent equilibrium distribution functions and precipitation lifetimes. The relative effects of each scattering mechanism are considered as a function of electron energy and L shell. Model calculations accurately describe the enhanced loss rates in the slot region, as well as reduced scattering in the heavily populated inner radiation belt. Predicted electron distribution function calculations in the slot region display a characteristic \textquotedbllefttop hat\textquotedblright distribution which is supported by observations. Inner zone electron lifetimes based on observed decay rates of the Starfish electron population are in approximate agreement with model predictions.

Abel, Bob; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 02/1998

YEAR: 1998     DOI: 10.1029/97JA02919

Local Loss due to VLF/ELF/EMIC Waves

Electron scattering loss in Earth\textquoterights inner magnetosphere 1. Dominant physical processes

Pitch angle diffusion rates due to Coulomb collisions and resonant interactions with plasmaspheric hiss, lightning-induced whistlers and anthropogenic VLF transmissions are computed for inner magnetospheric electrons. The bounce-averaged, quasi-linear pitch angle diffusion coefficients are input into a pure pitch angle diffusion equation to obtain L and energy dependent equilibrium distribution functions and precipitation lifetimes. The relative effects of each scattering mechanism are considered as a function of electron energy and L shell. Model calculations accurately describe the enhanced loss rates in the slot region, as well as reduced scattering in the heavily populated inner radiation belt. Predicted electron distribution function calculations in the slot region display a characteristic \textquotedbllefttop hat\textquotedblright distribution which is supported by observations. Inner zone electron lifetimes based on observed decay rates of the Starfish electron population are in approximate agreement with model predictions.

Abel, Bob; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 02/1998

YEAR: 1998     DOI: 10.1029/97JA02919

Local Loss due to VLF/ELF/EMIC Waves

1997

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure increase late on November 3. Outer zone electrons with E > 3 MeV measured by SAMPEX disappear for over 12 hours at the beginning of November 4. This represents a 3 orders of magnitude decrease down to the cosmic ray background of the detector. GPS and LANL sensors show similar effects, confirming that the flux drop of the energetic electrons occurs near the magnetic equator and at all pitch angles. Enhanced electron precipitation was measured by SAMPEX at L >= 3.5. The outer zone electron fluxes then recover and exceed prestorm levels within one day of the storm onset and the inner boundary of the outer zone moves inward to smaller L (<3). These multiple-satellite measurements provide a data set which is examined in detail and used to determine the mechanisms contributing to the loss and recovery of the outer zone electron flux. The loss of the inner part of the outer zone electrons is partly due to the adiabatic effects associated with the decrease of Dst, while the loss of most of the outer part (those electrons initially at L >= 4.0) are due to either precipitation into the atmosphere or drift to the magnetopause because of the strong compression of the magnetosphere by the solar wind. The recovery of the energetic electron flux is due to the adiabatic effects associated with the increase in Dst, and at lower energies (<0.5 MeV) due to rapid radial diffusion driven by the strong magnetic activity during the recovery phase of the storm. Heating of the electrons by waves may contribute to the energization of the more energetic part (>1.0 MeV) of the outer zone electrons.

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

Published by: Journal of Geophysical Research      Published on: 01/1997

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses

1994

Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes

Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric and magnetic fields versus local time and analysis of the energization and cross-L transport of the particles imply the existence of 200 to 300 mV/m electric fields over much of the dayside magnetosphere. These observations also suggest that the 15 MeV drift echo electrons were selectively energized because their gradient drift velocity allowed them to reside in the region of strong electric fields for the duration of the accelerating phase of the electric field.

Wygant, J.; Mozer, F.; Temerin, M.; Blake, J.; Maynard, N.; Singer, H.; Smiddy, M.;

Published by: Geophysical Research Letters      Published on: 08/1994

YEAR: 1994     DOI: 10.1029/94GL00375

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes

Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric and magnetic fields versus local time and analysis of the energization and cross-L transport of the particles imply the existence of 200 to 300 mV/m electric fields over much of the dayside magnetosphere. These observations also suggest that the 15 MeV drift echo electrons were selectively energized because their gradient drift velocity allowed them to reside in the region of strong electric fields for the duration of the accelerating phase of the electric field.

Wygant, J.; Mozer, F.; Temerin, M.; Blake, J.; Maynard, N.; Singer, H.; Smiddy, M.;

Published by: Geophysical Research Letters      Published on: 08/1994

YEAR: 1994     DOI: 10.1029/94GL00375

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes

Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric and magnetic fields versus local time and analysis of the energization and cross-L transport of the particles imply the existence of 200 to 300 mV/m electric fields over much of the dayside magnetosphere. These observations also suggest that the 15 MeV drift echo electrons were selectively energized because their gradient drift velocity allowed them to reside in the region of strong electric fields for the duration of the accelerating phase of the electric field.

Wygant, J.; Mozer, F.; Temerin, M.; Blake, J.; Maynard, N.; Singer, H.; Smiddy, M.;

Published by: Geophysical Research Letters      Published on: 08/1994

YEAR: 1994     DOI: 10.1029/94GL00375

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes

Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric and magnetic fields versus local time and analysis of the energization and cross-L transport of the particles imply the existence of 200 to 300 mV/m electric fields over much of the dayside magnetosphere. These observations also suggest that the 15 MeV drift echo electrons were selectively energized because their gradient drift velocity allowed them to reside in the region of strong electric fields for the duration of the accelerating phase of the electric field.

Wygant, J.; Mozer, F.; Temerin, M.; Blake, J.; Maynard, N.; Singer, H.; Smiddy, M.;

Published by: Geophysical Research Letters      Published on: 08/1994

YEAR: 1994     DOI: 10.1029/94GL00375

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1993

Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC

We model the rapid (\~ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth\textquoterights magnetic field. We follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L ≃ 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the electron drift motion with the time-varying electric field. Our simulation results, with an initial W-8 energy flux spectra, reproduce the observed electron drift echoes and show that the interplanetary shock impacted the magnetosphere between 1500 and 1800 MLT.

Li, Xinlin; Roth, I.; Temerin, M.; Wygant, J.; Hudson, M.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 11/1993

YEAR: 1993     DOI: 10.1029/93GL02701

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC

We model the rapid (\~ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth\textquoterights magnetic field. We follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L ≃ 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the electron drift motion with the time-varying electric field. Our simulation results, with an initial W-8 energy flux spectra, reproduce the observed electron drift echoes and show that the interplanetary shock impacted the magnetosphere between 1500 and 1800 MLT.

Li, Xinlin; Roth, I.; Temerin, M.; Wygant, J.; Hudson, M.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 11/1993

YEAR: 1993     DOI: 10.1029/93GL02701

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

1988

Simultaneous Radial and Pitch Angle Diffusion in the Outer Electron Radiation Belt

A solution of the bimodal (radial and pitch angle) diffusion equation for the radiation belts is developed with special regard for the requirements of satellite radiation belt data analysis. In this paper, we use this solution to test the bimodal theory of outer electron belt diffusion by confronting it with satellite data. Satellite observations, usually over finite volumes of (L, t) space, are seldom sufficient in space-time duration to cover the relaxation to equilibrium of the entire radiation belt. Since time scales of continuous data coverage are often comparable to that of radiation belt disturbances, it is therefore inappropriate to apply impulsive semi-infinite time response solutions of diffusion theory to interpret data from a finite window of (L, t) space. Observational limitations indicate that appropriate solutions for the interpretation of satellite data are general solutions for a finite-volume boundary value problem in bimodal diffusion. Here we test such a solution as the prime candidate for comprehensive radiation belt dynamic modeling by applying the solution and developing a method of analysis to radiation belt electron data obtained by the SCATHA satellite at moderate geomagnetic activity. The results and the generality of our solution indicate its promise as a new approach to dynamic modeling of the radiation belts.

Chiu, Y.; Nightingale, R.; Rinaldi, M.;

Published by: Journal of Geophysical Research      Published on: 04/1988

YEAR: 1988     DOI: 10.1029/JA093iA04p02619

Radial Transport

1981

The Dynamics of Energetic Electrons in the Earth\textquoterights Outer Radiation Belt During 1968 as Observed by the Lawrence Livermore National Laboratory\textquoterights Spectrometer on Ogo 5

An account is given of measurements of electrons made by the LLNL magnetic electron spectrometer (60\textendash3000 keV in seven differential energy channels) on the Ogo 5 satellite in the earth\textquoterights outer-belt regions during 1968 and early 1969. The data were analyzed to identify those features dominated by pitch angle and radial diffusion; in doing so all aspects of phase space covered by the data were studied, including pitch angle distributions and spectral features, as well as decay rates. The pitch angle distributions are reported elsewhere. The spectra observed in the weeks after a storm at L \~3\textendash4.5 show the evolution of a peak at \~1.5 MeV and pronounced minima at \~0.5 MeV. The observed pitch angle diffusion lifetimes are identified as being the shortest decays observed and are found to be highly energy and L dependent with minimum lifetimes of \~1\textendash2 days occurring at L \~3\textendash4.5. Two contiguous periods of decay, following the intense storm injection on October 31 and November 1, were analyzed in terms of radial diffusion. Significant differences were found between the derived values of DLL for the two periods; also significant energy dependence shows in the results. Although the values of DLL vary by about a factor of 10, representative values are 0.3 day-1 at L=6, 0.06 at L=4, 0.015 at L=3, and 0.001 at L=2.5. Despite the wide variation of many prior results in the literature, there is a family of results in approximate agreement with the present results. By noting the variations in DLL, as a function of the invariant quantities, we are able to order a fair body of previous results with our new results.

West, H.; Buck, R.; Davidson, G.;

Published by: Journal of Geophysical Research      Published on: 04/1981

YEAR: 1981     DOI: 10.1029/JA086iA04p02111

Radial Transport

1979

Direct Evaluation of the Radial Diffusion Coefficient near L = 6 Due to Electric Field Fluctuations

The radial diffusion coefficient for radiation belt particles near L=6 has been calculated from the measured electric field fluctuations. Simultaneous balloon flights in August 1974 from six auroral zone sites ranging 180\textdegree in magnetic longitude produced the electric field data. The large scale slowly varying ionospheric electric fields from these flights have been mapped to the equator during the quiet magnetic conditions of this campaign. These mapped equatorial electric fields were then Fourier transformed in space and time to produce power spectra of the first two terms of the global azimuthal electric field. From these power spectra the radial diffusion coefficient has been calculated.

Holzworth, R.; Mozer, F.;

Published by: Journal of Geophysical Research      Published on: 06/1979

YEAR: 1979     DOI: 10.1029/JA084iA06p02559

Radial Transport

1973

ULF Geomagnetic Power near L = 4, 2. Temporal Variation of the Radial Diffusion Coefficient for Relativistic Electrons

Measurements at conjugate points on the ground near L = 4 of the power spectra of magnetic-field fluctuations in the frequency range 0.5 to 20 mHz are used as a means of estimating daily values for the relativistic-electron radial-diffusion coefficient DLL for two periods in December 1971 and January 1972. The values deduced for L-10 DLL show a strong variation with magnetic activity, as measured by the Fredricksburg magnetic index KFR. The radial-diffusion coefficient typically increases by a factor of \~10 for a unit increase in KFR. When KFR ≲ 2, it is generally found that DLL ≲ 2 \texttimes 10-9 L10 day-1 for equatorially mirroring electrons having a first invariant M = 750 Mev/gauss; a value of DLL \~4 \texttimes 10-7 L10 day-1 is deduced for one day on which the mean KFR was 4.5. The quantity L-10 DLL theoretically depends on energy and L as (L/M)(s-2)/2 for relativistic particles, where s is the logarithmic slope of the power-law spectrum of magnetic fluctuations observed on the ground. For the time period analyzed, s typically had values between 1 and 3.

Lanzerotti, L.; Morgan, Caroline;

Published by: Journal of Geophysical Research      Published on: 08/1973

YEAR: 1973     DOI: 10.1029/JA078i022p04600

Radial Transport

Equilibrium Structure of Radiation Belt Electrons

The detailed quiet time structure of energetic electrons in the earth\textquoterights radiation belts is explained on the basis of a balance between pitch angle scattering loss and inward radial diffusion from an average outer zone source. Losses are attributed to a combination of classical Coulomb scattering at low L and whistler mode turbulent pitch angle diffusion throughout the outer plasmasphere. Radial diffusion is driven by substorm associated fluctuations of the magnetospheric convection electric field.

Lyons, Lawrence; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 05/1973

YEAR: 1973     DOI: 10.1029/JA078i013p02142

Local Loss due to VLF/ELF/EMIC Waves

1972

Parasitic Pitch Angle Diffusion of Radiation Belt Particles by Ion Cyclotron Waves

The resonant pitch angle scattering of protons and electrons by ion cyclotron turbulence is investigated. The analysis is analogous to that recently performed for electron interactions with whistler mode waves. The role played by the intense band of ion cyclotron waves, predicted to be generated just within the plasmapause during the decay of the magnetospheric ring current, is evaluated in detail. Loss rates resulting from parasitic interactions with this turbulence are determined for energetic protons and relativistic electrons.

Lyons, Lawrence; Thorne, Richard;

Published by: Journal of Geophysical Research      Published on: 10/1972

YEAR: 1972     DOI: 10.1029/JA077i028p05608

Local Loss due to VLF/ELF/EMIC Waves

Inner-Zone Energetic-Electron Repopulation by Radial Diffusion

A quantitative study of the intrusion of natural electrons into the inner radiation zone during and after the geomagnetic storm of September 2, 1966, shows that the transport is consistent with a radial-diffusion mechanism in which the first two invariants are conserved. Except for the 3-day period of the storm main phase when data were missing, the radial-diffusion coefficient is D = 2.7 \texttimes 10-5 L7.9 μ-0.5 day-1 in the range 1.7 <= L <= 2.6 and 13.3 <= μ <= 27.4 Mev gauss-1. This value could be produced by variation of a large-scale electric field across the magnetosphere having an amplitude of 0.28 mv / m and a period of 1600 sec. Electric fields having approximately these characteristics have been inferred from previous observations of the motion of whistler ducts within the plasmapause. If fields of this amplitude and period exist throughout the magnetosphere, the radial diffusion of all geomagnetically trapped particles except the high-energy inner-zone protons is strongly influenced by electric-field variations. A comprehensive review of previously reported radial-diffusion coefficients shows reasonable agreement for L less than about 3.0, but serious discrepancies among reported values exist for determinations made in the outer zone. These discrepancies cannot be explained by the simple theory of radial diffusion due to variation of large-scale electric or magnetic fields.

Tomassian, Albert; Farley, Thomas; Vampola, Alfred;

Published by: Journal of Geophysical Research      Published on: 07/1972

YEAR: 1972     DOI: 10.1029/JA077i019p03441

Radial Transport

1970

Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation

The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17\textendash18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant \textmu. For each value of \textmu, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a factor of 10 than the value recently found by Newkirk and Walt in a separate analysis of 1.6-Mev electron data obtained during the same time period on another satellite. The electron lifetimes are found to be strong functions of L, with 4- to 6-day lifetimes observed at the higher L values (4.6\textendash4.8).

Lanzerotti, L.; Maclennan, C.; Schulz, Michael;

Published by: Journal of Geophysical Research      Published on: 10/1970

YEAR: 1970     DOI: 10.1029/JA075i028p05351

Radial Transport

Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation

The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17\textendash18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant \textmu. For each value of \textmu, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a factor of 10 than the value recently found by Newkirk and Walt in a separate analysis of 1.6-Mev electron data obtained during the same time period on another satellite. The electron lifetimes are found to be strong functions of L, with 4- to 6-day lifetimes observed at the higher L values (4.6\textendash4.8).

Lanzerotti, L.; Maclennan, C.; Schulz, Michael;

Published by: Journal of Geophysical Research      Published on: 10/1970

YEAR: 1970     DOI: 10.1029/JA075i028p05351

Radial Transport

1969

Radial Diffusion of Starfish Electrons

A study of the change in electron intensities in the Starfish electron belt from January 1, 1963, to November 3, 1965, indicates that radial diffusion, both inward and outward from L of 1.40, was a significant loss mechanism for these electrons during this period. For L values of 1.20 and below, the indicated steepening of the pitch-angle distributions during this period has been interpreted as the result of a radial diffusion source for each L shell concentrated near the geomagnetic equator. Since pitch-angle diffusion lifetimes are not well known for 1.20 < L < 1.65, a definitive radial diffusion coefficient cannot be computed from these data. A maximum reasonable diffusion coefficient (mean square displacement per unit time) computed for this range of L for this period has a minimum at L of 1.31, and a value of 4.4 \texttimes 10-5 RE\texttwosuperior/day at that point. This maximum coefficient, representing an average over a 3-year period, is more than an order of magnitude too small to account for the apparent radial diffusion of natural electrons into this region that took place in September 1966. The results are, however, consistent with population of the inner zone by radial electron diffusion occurring during relatively short periods during which the diffusion coefficient is enhanced by two or three orders of magnitude.

Farley, Thomas;

Published by: Journal of Geophysical Research      Published on: 07/1969

YEAR: 1969     DOI: 10.1029/JA074i014p03591

Radial Transport

Diffusion of Equatorial Particles in the Outer Radiation Zone

Expansions and contractions of the permanently compressed magnetosphere lead to the diffusion of equatorially trapped particles across drift shells. A general technique for obtaining the electric fields induced by these expansions and contractions is described and applied to the Mead geomagnetic field model. The resulting electric drifts are calculated and are superimposed upon the gradient drift executed by a particle that conserves its first (μ) and second (J = 0) adiabatic invariants. The noon-midnight asymmetry of the unperturbed drift trajectory (resulting from gradient drift alone) is approximated by means of a simple model. In this model the angular drift frequency is found to be the geometric mean of a particle\textquoterights angular drift velocities at noon and midnight. The radial diffusion coefficient D = (\textonehalf) (ΔL)\texttwosuperior/time is calculated as a function of the McIlwain parameter L and in terms of the spectral density of fluctuations in the stand-off distance of the magnetosphere boundary. Because the unperturbed drift trajectories are asymmetric, drift-resonant diffusion of particles is produced by spectral components at all harmonics of the drift frequency, although the first (fundamental) harmonic is the major contributor.

Schulz, Michael; Eviatar, Aharon;

Published by: Journal of Geophysical Research      Published on: 05/1969

YEAR: 1969     DOI: 10.1029/JA074i009p02182

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at λ \~ 71\textdegree and \~9 RE in the equatorial plane on the sunlit side, and at 7\textendash8 RE in the equatorial plane on the nightside. Beyond this, the unstable radiation zone extends out to the magnetosphere boundary and up to λ \~ 77\textdegree on the sunlit side, and out to 14\textendash15 RE on the nightside. The relatively rapid electron intensity variations with periods of 1\textendash7 days are essentially absent at distances less than that of the outer belt but are distinctly seen in the outer belt. In the unstable radiation zone the intensity of electrons with energies of the order of 105 ev changes by several times, and good correlation is observed with the increase in Kp. Analysis of the outer belt data shows that this belt is formed partly by electron diffusion into the magnetosphere (like the belt of protons with energies of 105\textendash107 ev) and partly by the simultaneous acceleration of electrons at various distances from the earth. A comparison of electron intensity changes with the solar activity cycle shows little or no correlation for electrons with Ee > 40 kev. The intensity of electrons with Ee > 500 kev has changed significantly; in 1964 it was 30 times lower than in 1959. The absence of significant dependence of the diffusion coefficients for electrons with E \~ 104\textendash105 ev on the phase of the solar activity cycle shows that the relatively weak magnetic disturbances that do not change with the phase of the cycle are of major importance in diffusion. This suggests that these magnetic disturbances appear at great distances from the sun because of the instabilities of plasma itself and, therefore, that they depend little on solar activity.

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

1968

Radial Diffusion Coefficient for Electrons at 1.76 < L < 5

Radial diffusion by nonconservation of the third adiabatic invariant of particle motion is assumed in analyzing experiments in which electrons appeared to move across field lines. Time-dependent solutions of the Fokker-Planck diffusion equation are obtained numerically and fitted to the experimental results by adjusting the diffusion coefficient. Values deduced for the diffusion coefficient vary from 1.3 \texttimes 10-5 RE\texttwosuperior/day at L = 1.76 to 0.10 RE\texttwosuperior/day at L = 5. In the interval 2.6 < L < 5, the coefficient varies as L10\textpm1. Assuming a constant electron source of arbitrary magnitude at L = 6 and the above diffusion coefficients, the equatorial equilibrium distribution is calculated for electrons with energies above 1.6 Mev. The calculation yields an outer belt of electrons whose radial distribution is in good agreement with the observed belt. The calculated distribution also exhibits an inner belt at L ≈ 1.5. However, the calculated intensity of the inner belt relative to the outer belt is several orders of magnitude smaller than the experimental ratio.

Newkirk, L.; Walt, M.;

Published by: Journal of Geophysical Research      Published on: 12/1968

YEAR: 1968     DOI: 10.1029/JA073i023p07231

Radial Transport

Radial Diffusion Coefficient for Electrons at Low L Values

An empirical evaluation of the diffusion coefficient for trapped electrons diffusing across low L shells is obtained by adjusting the coefficient to account for the observed radial profile and the long-term decay rate of the trapped electron flux. The diffusion mechanism is not identified, but it is assumed that the adiabatic invariants \textmu and J are conserved. The average value of the coefficient for electrons > 1.6 Mev energy is found to decrease monotonically from \~4 \texttimes 10-6 RE\texttwosuperior/day at L = 1.16 to \~2 \texttimes 10-7 RE\texttwosuperior/day at L = 1.20.

Newkirk, L.; Walt, M.;

Published by: Journal of Geophysical Research      Published on: 02/1968

YEAR: 1968     DOI: 10.1029/JA073i003p01013

Radial Transport

1966

Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field

The quasi-linear velocity space diffusion is considered for waves of any oscillation branch propagating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma. The space-averaged distribution function is assumed to change slowly compared to a gyroperiod and characteristic times of the wave motion. Nonlinear mode coupling is neglected. An H-like theorem shows that both resonant and nonresonant quasi-linear diffusion force the particle distributions towards marginal stablity. Creation of the marginally stable state in the presence of a sufficiently broad wave spectrum in general involves diffusing particles to infinite energies, and so the marginally stable plateau is not accessible physically, except in special cases. Resonant particles with velocities much larger than typical phase velocities in the excited spectrum are scattered primarily in pitch angle about the magnetic field. Only particles with velocities the order of the wave phase velocities or less are scattered in energy at a rate comparable with their pitch angle scattering rate.

Kennel, C.;

Published by: Physics of Fluids      Published on: 12/1966

YEAR: 1966     DOI: 10.1063/1.1761629

Local Loss due to VLF/ELF/EMIC Waves

Limit on Stably Trapped Particle Fluxes

Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclotron noise couples to ions. This diffusion results in particle precipitation into the ionosphere and creates a pitch angle distributon of trapped particles that is unstable to further wave growth. Since excessive wave growth leads to rapid diffusion and particle loss, the requirement that the growth rate be limited to the rate at which wave energy is depleted by wave propagation permits an estimate of an upper limit to the trapped equatorial particle flux. Electron fluxes >40 kev and proton fluxes >120 kev observed on Explorers 14 and 12, respectively, obey this limit with occasional exceptions. Beyond L = 4, the fluxes are just below their limit, indicating that an unspecified acceleration source, sufficient to keep the trapped particles near their precipitation limit, exists. Limiting proton and electron fluxes are roughly equal, suggesting a partial explanation for the existence of larger densities of high-energy protons than of electrons. Observed electron pitch angle profiles correspond to a diffusion coefficient in agreement with observed lifetimes. The required equatorial whistler mode wide band noise intensity, 10-2γ, is not obviously inconsistent with observations and is consistent with the lifetime and with limiting trapped particle intensity.

Kennel, C.; Petschek, H.;

Published by: Journal Geophysical Research      Published on: 01/1966

YEAR: 1966     DOI: 10.1029/JZ071i001p00001

Local Loss due to VLF/ELF/EMIC Waves



  79      80      81      82      83      84