Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 124 entries in the Bibliography.


Showing entries from 51 through 100


2017

Generation of Highly Oblique Lower-band Chorus via Nonlinear Three-wave Resonance

Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower-band and an upper-band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower-band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternative mechanism for generation of this highly oblique lower-band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower-band chorus wave can interact with a mildly oblique upper-band chorus wave, producing a highly oblique quasi-electrostatic lower-band chorus wave. This theoretical analysis is confirmed by 2D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. The three-wave resonance mechanism may also explain the generation of quasi-parallel upper-band chorus which has also been observed in the magnetosphere.

Fu, Xiangrong; Gary, Peter; Reeves, Geoffrey; Winske, Dan; Woodroffe, Jesse;

Published by: Geophysical Research Letters      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017GL074411

oblique whistler; PIC simulation; Ray Tracing; three-wave resonance; Van Allen Probes

Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances

Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show that low-frequency hiss induced bounce-resonant scattering of electrons has a strong dependence on equatorial pitch-angle αeq. For electrons with αeq close to 90\textdegree, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 hour. Cyclotron- and Landau-resonant interactions between low-frequency hiss and electrons are also investigated for comparisons. It is found that while the bounce and Landau resonances are responsible for the diffusive transport of near-equatorially mirroring electrons to lower αeq, pitch-angle scattering by cyclotron resonance could take over to further diffuse electrons into the atmosphere. Bounce resonance provides a more efficient pitch-angle scattering mechanism of relativistic (>= 1 MeV) electrons than Landau resonance due to the stronger scattering rates and broader resonance coverage of αeq, thereby demonstrating that bounce resonance scattering by low-frequency hiss can contribute importantly to the evolution of the electron pitch-angle distribution and the loss of radiation belt electrons.

Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun;

Published by: Geophysical Research Letters      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017GL075104

bounce resonance; Low-frequency hiss; Radiation Belt Dynamics; Van Allen Probes; wave-particle interactions

Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.

Ren, Jie; Zong, Q.; Miyoshi, Y.; Zhou, X.; Wang, Y.; Rankin, R.; Yue, C.; Spence, H.; Funsten, H.; Wygant, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024316

Cold plasmaspheric electrons; drift-bounce resonance; Plasma instability; Plasmaspheric boundary layer; Substorm-injected protons; ULF waves; Van Allen Probes

The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant μ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new \textquotedblleftafternoon bulge\textquotedblright plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100\textendash2000 MLT and L shell 2\textendash4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024160

inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes

Storm time empirical model of O + and O 6+ distributions in the magnetosphere

Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic storms. At high energies (~200 keV) the flux of O+ and O6+ are seen to become comparable in the outer magnetosphere. Moreover, while the density of O+ is far higher than O6+, the two charge states have comparable pressures in the outer magnetosphere. The temperature of O6+ is generally higher than that of O+, because the O6+ is injected from preheated magnetosheath populations before undergoing further heating once in the magnetosphere. A comparison between the model results with O+ observations from the Magnetospheric Multiscale mission and the Van Allen Probes provides a validation of the model. In general, this empirical model agrees qualitatively well with the trends seen in both data sets. Quantitatively, the modeled density, pressure, and temperature almost always agree within a factor of at most 10, 5, and 2, respectively.

Allen, R.; Livi, S.; Vines, S.; Goldstein, J.; Cohen, I.; Fuselier, S.; Mauk, B.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024245

MMS mission; Polar mission; solar wind injection; storm time dynamics; Van Allen Probes; Van Allen Probes mission

In situ observations of magnetosonic waves modulated by background plasma density

We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with \textquoteleftring\textquoteright distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.

Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Wang, Dedong; Funsten, Herbert;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074681

\textquoterightring\textquoteright distributions; local linear growth rates; magnetosonic waves; Ring current ions; Van Allen Probes

Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

We present an analysis of \textquotedblleftboomerang-shaped\textquotedblright pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90o pitch angle electrons, the phase change of the flux modulations across energy exceeds 180o, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Spence, H.; Blake, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074006

drift resonance; interplanetary shock; localized waves; Radiation belts; ULF waves; Van Allen Probes; Wave-particle interaction

Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7\textendash5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV\textendash1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1\textendash10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. The current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL073051

ECH waves; RBSP results; Van Allen Probes; Wave-particle interaction

Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study

Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of \textquotedblleftlarge flux enhancement\textquotedblright and \textquotedblleftsmall flux enhancement.\textquotedblright For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons (592 keV, 1 MeV, 1.8 MeV, and 2.1 MeV) during the storm recovery phase decrease with electron kinetic energy, being 0.92, 0.68, 0.49, and 0.39, respectively. The correlation coefficients between the peak flux of the seed population and those of relativistic electrons are 0.92, 0.81, 0.75, and 0.73. For small flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons are relatively smaller, while the peak flux of the seed population is well correlated with those of relativistic electrons (correlation coefficients >0.84). It is suggested that during geomagnetic storms there is a good correlation between the seed population and <=1 MeV electrons and the seed population is important to the relativistic electron dynamics.

Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA023905

relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes

Relativistic electron\textquoterights butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

Dayside modulated relativistic electron\textquoterights butterfly pitch angle distributions (PADs) from \~200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60\textendash100 keV proton and 60\textendash200 keV helium and oxygen) injections. We reproduce the electron\textquoterights butterfly PADs at satellite\textquoterights location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron\textquoterights butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron\textquoterights butterfly PADs in the Earth\textquoterights radiation belts.

Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL072558

butterfly distribution; Radiation belt; ring current; Van Allen Probes

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency, relativistic effects should be considered in the formula for whistler mode wave growth rate. Here we report high-resolution observations during the 14 October 2014 small storm and firstly demonstrate, using a fully relativistic simulation, that electrons with the high-energy tail population and relativistic pitch angle anisotropy can provide free energy sufficient for generating chorus below 0.1 fce. The simulated wave growth displays a very similar pattern to the observations. The current results can be applied to Jupiter, Saturn, and other magnetized planets.

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang;

Published by: Advances in Space Research      Published on: 03/2017

YEAR: 2017     DOI: 10.1016/j.asr.2016.12.035

Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches \~ 35\textendash95 pT in the case of distinct butterfly distributions with BI > 1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80\%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume

We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume

We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 fcp and fLHR. The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood.

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

2016

Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016GL071359

drift path; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model

Ion nose spectral structures observed by the Van Allen Probes

We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016JA022942

inner magnetosphere; ion injection; Ion structure; plasma sheet; ring current; Van Allen Probes

The complex nature of storm-time ion dynamics: Transport and local acceleration

Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm-injected plasma.

Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070878

plasmasheet; Van Allen Probes

Unraveling the excitation mechanisms of highly oblique lower band chorus waves

Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth\textquoterights magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100\textendash500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100\textendash500 eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. Our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics.

Li, W.; Mourenas, D.; Artemyev, A.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Funsten, H.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1710.1002/2016GL070386

beam instability; lower band chorus; oblique chorus excitation; temperature anisotropy; Van Allen Probes

The relationship between the plasmapause and outer belt electrons

We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt\textquoterights peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index Fp, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15\textendash20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).

Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA023046

Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simulations show that the relativistic electron loss in the region L = 4.5\textendash6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere, but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblright with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from \~1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range \~300\textendash1500 Hz with the peak wave power density about 10-5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhile, hiss emissions are confined inside the plasmasphere, with a higher intensity and a broader area at a lower frequency. A sum of bi-Maxwellian distribution is used to model the observed anisotropic electron distributions and to evaluate the instability of waves. A three-dimensional ray tracing simulation shows that a portion of chorus emission outside the plasmasphere can propagate into the plasmasphere and evolve into plasmaspheric hiss. Moreover, hiss waves below 1 kHz are more intense and propagate over a broader area than those above 1 kHz, consistent with the observation. The current results can explain distributions of the observed hiss emission and provide a further support for the mechanism of evolution of chorus into hiss emissions.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022366

chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes

Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm

The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the BATS-R-US global magnetohydrodynamic (MHD) model linked with the Rice Convection Model (RCM). The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

Reiff, P.; Daou, A.; Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069154

Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12\% for the moderate storm and ~7\% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30\% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022358

deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes

Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections

Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the pre-midnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field three times stronger than that of the injectionless half. All DFB injections are dispersionless within the temporal resolution considered (11 seconds). Our findings suggest that these injections are ushered or produced locally by the DFB, and the DFB\textquoterights strong electric field is an important aspect of the injection generation mechanism.

Liu, Jiang; Angelopoulos, V.; Zhang, Xiao-Jia; Turner, D.; Gabrielse, C.; Runov, A.; Li, Jinxing; Funsten, H.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021691

dipolarization front; dipolarizing flux bundle; energetic particle injection; geosynchronous orbit; magnetic storm; Particle acceleration

2015

Observations of discrete magnetosonic waves off the magnetic equator

Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5\textdegreeto -17.9\textdegree and L shell ~2.7\textendash4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regions located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations match the two observed frequency spacings. Our analysis provides the first observations of the harmonic nature of magnetosonic waves well away from the equatorial region and suggests that the propagation from multiple equatorial sources contributes to these off-equatorial magnetosonic emissions with varying frequency spacings.

Zhima, Zeren; Chen, Lunjin; Fu, Huishan; Cao, Jinbin; Horne, Richard; Reeves, Geoff;

Published by: Geophysical Research Letters      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015GL066255

discrete structure; magnetsonic wave; off-equatorial region

Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energies while being confined to higher L-shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L-shells for lower energies. Both boundaries are nearly straight in log(energy) vs. L-shell space. At energies below a few hundred keV radiation belt electron penetration through the slot region into the inner zone is commonplace but the number and frequency of \textquotedblleftslot filling\textquotedblright events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L-shell dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021569

Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

Shue, Jih-Hong; Hsieh, Yi-Kai; W. Y. Tam, Sunny; Wang, Kaiti; Fu, Hui; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert;

Published by: Geophysical Research Letters      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015GL066107

Chorus; local time distribution; repetition period

\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes

Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6\textendash2.6, MLT = 9.1\textendash10.5, and MLAT = -2.4\textendash0.09\textdegree, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5\textendash0.7 keV, L = 3.6\textendash2.5, MLT = 9.1\textendash10.7, and MLAT = -2.4\textendash0.4\textdegree. Results from backward ion drift path tracings indicate that the trunks are likely due to 1) a gap in the nightside ion source or 2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021822

inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes

Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.

Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065745

Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40\textdegree for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90\textdegree remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to \textquotedbllefttop-hat.\textquotedblright Overall, H+-band and He+-band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1\textendash2 MeV. In contrast, the presence of O+-band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5\textendash10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics.

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the March 29, 2013 storm we investigated in detail, the contribution from O+ is ~25\% of the ring current energy content during the main phase, and the majority of that comes from < 50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. The results show that the measured ring current ions contribute about half of the Dst depression.

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by one order of magnitude in less than 3 hours in the outer radiation belt (L>4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes

Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around between 0.3fce and 0.4fce, at latitude <7o. Moreover, chorus waves launched with initial normal angles either θ < 90o or >90o propagate along the field either northward or southward, and then bounce back either away from Earth for a lower frequency or towards Earth for higher frequencies. The current results indicate that nightside chorus waves can be excited even during weak geomagnetic activities in cases of continuous injection associated with negative Bz. Moreover, we examine a dayside event during a small storm C on 8 May 2014 (Dst≈-45) and find that the observed anisotropic energetic electron distributions potentially contribute to the generation of dayside chorus waves, but this requires more thorough studies in the future.

He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021376

chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction

Multipoint observations of the open-closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the November 14 th 2012 geomagnetic storm

The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dropped to less than -100nT with the IMF being strongly southward (Bz = -15nT) and eastward (By = 20 nT). Observations by LANL GEO spacecraft at geosynchronous orbit also show lobe encounters in the northern hemisphere and on the dusk flank. The two spacecraft configuration provides strong evidence that these periodic entries into the lobe are the result of local expansions of the OCB propagating from the tail and passing over the Van Allen Probes. Examination of pitch angle binned data from the HOPE instrument shows spatially large, accelerated ion structures occurring near simultaneously at both spacecraft, with the presence of oxygen indicating that they have an ionospheric source. The outflows are dispersed in energy and are detected when the spacecraft are on both open and closed field lines. These events provide a chance to examine the global magnetic field topology in detail, as well as smaller scale spatial and temporal characteristics of the OCB, allowing us to constrain the position of the open/closed field line boundary and compare it to a global MHD model using a novel method. This technique shows that the model can reproduce a periodic approach and retreat of the OCB from the spacecraft but can overestimate its distance by as much as 3 RE. The model appears to simulate the dynamic processes that cause the spacecraft to encounter the lobe but incorrectly maps the overall topology of the magnetosphere during these extreme conditions.

Dixon, P.; MacDonald, E.; Funsten, H.; Glocer, A.; Grande, M.; Kletzing, C.; Larsen, B.; Reeves, G.; Skoug, R.; Spence, H.; Thomsen, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020883

Lobes; Magnetosphere; Modelling; Open/closed field line boundary; Van Allen Probes

Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus

An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, Peter;

Published by: Geophysical Research Letters      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015GL064182

banded chorus; nonlinear theory; subcyclotron resonance

Wave-driven butterfly distribution of Van Allen belt relativistic electrons

Van Allen radiation belts consist of relativistic electrons trapped by Earth\textquoterights magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90\textdegree further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day\textendashnight asymmetry in Earth\textquoterights magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Nature Communications      Published on: 05/2015

YEAR: 2015     DOI: 10.1038/ncomms9590

Van Allen Probes



  1      2      3