Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1116 entries in the Bibliography.


Showing entries from 951 through 1000


2014

REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth\textquoterights outer radiation belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019431

Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions

REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth\textquoterights outer radiation belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019431

Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions

REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth\textquoterights Outer Radiation Belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.;

Published by: Journal of Geophysical Research      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019431

RBSP; Van Allen Probes

REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth\textquoterights Outer Radiation Belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.;

Published by: Journal of Geophysical Research      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019431

RBSP; Van Allen Probes

REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth\textquoterights Outer Radiation Belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.;

Published by: Journal of Geophysical Research      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019431

RBSP; Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Signature modeling for LWIR spectrometer

Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the signatures collected. In this paper a new method is introduced to process field collected signatures gathered using the Design \& Prototypes microFTIR Model 102. The issue addressed here is calculating the collected signature from radiance to emissivity using a new technique for estimating the surface temperature of the collected sample. The key component of the TES was created to ensure the collected spectra are processed in emissivity space at a quality that is suitable for the detection library on air and ground LWIR systems.

Firpi, Alexer; Oxenrider, Jason; Ramachandran, Vignesh; Mitchell, Herbert; Tzeng, Nigel; Rodriguez, Benjamin;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836439

hyperspectral imaging; infrared imaging; infrared spectrometers; radiance data conversion

Signature modeling for LWIR spectrometer

Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the signatures collected. In this paper a new method is introduced to process field collected signatures gathered using the Design \& Prototypes microFTIR Model 102. The issue addressed here is calculating the collected signature from radiance to emissivity using a new technique for estimating the surface temperature of the collected sample. The key component of the TES was created to ensure the collected spectra are processed in emissivity space at a quality that is suitable for the detection library on air and ground LWIR systems.

Firpi, Alexer; Oxenrider, Jason; Ramachandran, Vignesh; Mitchell, Herbert; Tzeng, Nigel; Rodriguez, Benjamin;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836439

hyperspectral imaging; infrared imaging; infrared spectrometers; radiance data conversion

Spin stabilization design and testing of the Van Allen Probes

This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass properties and coning angle calculations of the fully deployed observatories. Launched August 30, 2012, the observed on-orbit, fully deployed configuration coning angles met the requirements, validating the spin balance and mass properties tracking, testing, and calculation methods chosen for the Van Allen Probes mission.

Berman, Simmie; Cheng, Weilun; Borowski, Heather; Persons, David;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836234

Van Allen Probes

Evidence for injection of relativistic electrons into the Earth\textquoterights outer radiation belt via intense substorm electric fields

Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic \textquoteleftkiller\textquoteright electrons (>=MeV) in addition to 10\textendash100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer radiation belt. In these two events, injected relativistic electrons dominated the substorm timescale enhancement of MeV electrons as observed at geosynchronous orbit.

Dai, Lei; Wygant, John; Cattell, Cynthia; Thaller, Scott; Kersten, Kris; Breneman, Aaron; Tang, Xiangwei; Friedel, Reiner; Claudepierre, Seth; Tao, Xin;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059228

radiation belt relativistic electrons; substorm dipolarization; substorm electric fields; substorm injection

Evidence for injection of relativistic electrons into the Earth\textquoterights outer radiation belt via intense substorm electric fields

Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic \textquoteleftkiller\textquoteright electrons (>=MeV) in addition to 10\textendash100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer radiation belt. In these two events, injected relativistic electrons dominated the substorm timescale enhancement of MeV electrons as observed at geosynchronous orbit.

Dai, Lei; Wygant, John; Cattell, Cynthia; Thaller, Scott; Kersten, Kris; Breneman, Aaron; Tang, Xiangwei; Friedel, Reiner; Claudepierre, Seth; Tao, Xin;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059228

radiation belt relativistic electrons; substorm dipolarization; substorm electric fields; substorm injection

Global time-dependent chorus maps from low-Earth-orbit electron precipitation and Van Allen Probes data

Substorm injected electrons (several\textendash100 s keV) produce whistler-mode chorus waves that are thought to have a major impact on the radiation belts by causing both energization and loss of relativistic electrons in the outer belt. High-altitude measurements, such as those from the Van Allen Probes, provide detailed wave measurements at a few points in the magnetosphere. But physics-based models of radiation-belt dynamics require knowledge of the global distribution of chorus waves. We demonstrate that time-dependent, global distributions of near-equatorial chorus wave intensities can be inferred from low-Earth-orbit (LEO) measurements of precipitating low-energy electrons. We compare in situ observations of near-equatorial chorus waves with LEO observations of precipitating electrons and derive a heuristic formula that relates, quantitatively, electron precipitation fluxes to chorus wave intensities. Finally, we demonstrate how that formula can be applied to LEO precipitation measurements and in situ Van Allen Probes wave measurements to provide global, data-driven inputs for radiation belt models.

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner; Cunningham, Gregory;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059181

Van Allen Probes

Global time-dependent chorus maps from low-Earth-orbit electron precipitation and Van Allen Probes data

Substorm injected electrons (several\textendash100 s keV) produce whistler-mode chorus waves that are thought to have a major impact on the radiation belts by causing both energization and loss of relativistic electrons in the outer belt. High-altitude measurements, such as those from the Van Allen Probes, provide detailed wave measurements at a few points in the magnetosphere. But physics-based models of radiation-belt dynamics require knowledge of the global distribution of chorus waves. We demonstrate that time-dependent, global distributions of near-equatorial chorus wave intensities can be inferred from low-Earth-orbit (LEO) measurements of precipitating low-energy electrons. We compare in situ observations of near-equatorial chorus waves with LEO observations of precipitating electrons and derive a heuristic formula that relates, quantitatively, electron precipitation fluxes to chorus wave intensities. Finally, we demonstrate how that formula can be applied to LEO precipitation measurements and in situ Van Allen Probes wave measurements to provide global, data-driven inputs for radiation belt models.

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner; Cunningham, Gregory;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059181

Van Allen Probes

Magnetosonic wave excitation by ion ring distributions in the Earth\textquoterights inner magnetosphere

Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth\textquoterights magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause where the wave spectrum varied with fLHR and inside the plasmapause where the wave frequency band remained nearly constant. Our plasma instability analysis in three different regions shows that higher and narrow frequency band MS waves are excited locally outside the plasmapause, and lower and broad frequency band MS waves are excited in the region where the density slightly increases. However, there is no evidence for wave excitation inside the plasmapause, and wave propagation from a distant source is needed to explain their existence. The simulation of the MS wave growth rate spectra during this event agrees reasonably well with the observed wave magnetic field power spectra. We also simulated a MS wave event on 19 October 2011 in the dusk sector and found that the ion ring distribution with an ion ring energy slightly higher than the local Alfven energy can excite the typical broad band MS waves outside the plasmapause.

Ma, Qianli; Li, Wen; Chen, Lunjin; Thorne, Richard; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013JA019591

magnetosonic waves; ring current; THEMIS observation; wave excitation

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100\textendash300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100\textendash300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes

Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission

He ions contribute to Earth\textquoterights ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights into trapped ring current energy He ions. These data provide a unique resource that will be used to provide verifications of, and improvements to, models of He ion transport and loss in Earth\textquoterights ring current region.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059175

Van Allen Probes

The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm

We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convection electric field, are necessary to develop a strong ring current. Comparisons with Van Allen Probes observations show that our model reasonably well captures dispersed electron injections and the global Dst index.

Yu, Yiqun; Jordanova, Vania; Welling, Dan; Larsen, Brian; Claudepierre, Seth; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2014GL059322

ring current dynamics; self-consistent treatment of fields and plasma; Substorm Injections; Van Allen Probes

Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere

Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ -130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m-2 s-1 erosion flux, while DMSP F-18 observed ~2E13 m-2 s-1 sunward flux. We find close similarities at high and low altitudes between the erosion plume in both invariant latitude spatial extent and plasma characteristics.

Foster, J.; Erickson, P.; Coster, A.; Thaller, S.; Tao, J.; Wygant, J.; Bonnell, J;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059124

Van Allen Probes

Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere

Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ -130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m-2 s-1 erosion flux, while DMSP F-18 observed ~2E13 m-2 s-1 sunward flux. We find close similarities at high and low altitudes between the erosion plume in both invariant latitude spatial extent and plasma characteristics.

Foster, J.; Erickson, P.; Coster, A.; Thaller, S.; Tao, J.; Wygant, J.; Bonnell, J;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059124

Van Allen Probes

An empirically observed pitch-angle diffusion eigenmode in the Earth\textquoterights electron belt near L * = 5.0

Using data from NASA\textquoterights Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays.

O\textquoterightBrien, T.; Claudepierre, S.; Blake, J.; Fennell, J.; Clemmons, J.; Roeder, J.; Spence, H.; Reeves, G.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058713

Van Allen Probes

An empirically observed pitch-angle diffusion eigenmode in the Earth\textquoterights electron belt near L * = 5.0

Using data from NASA\textquoterights Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays.

O\textquoterightBrien, T.; Claudepierre, S.; Blake, J.; Fennell, J.; Clemmons, J.; Roeder, J.; Spence, H.; Reeves, G.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058713

Van Allen Probes

An empirically observed pitch-angle diffusion eigenmode in the Earth\textquoterights electron belt near L * = 5.0

Using data from NASA\textquoterights Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays.

O\textquoterightBrien, T.; Claudepierre, S.; Blake, J.; Fennell, J.; Clemmons, J.; Roeder, J.; Spence, H.; Reeves, G.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058713

Van Allen Probes

Generation of electromagnetic waves in the very low frequency band by velocity gradient

It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k⎯⎯=kc/ωpe (normalized by the electron skin depth) and the obliqueness, k⊥/k|| , where k⊥,|||| are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k⎯⎯>>1 and k⊥>>k|| and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.

Ganguli, G.; Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.;

Published by: Physics of Plasmas      Published on: 01/2014

YEAR: 2014     DOI: 10.1063/1.4862032

Electromagnetic wave

Generation of electromagnetic waves in the very low frequency band by velocity gradient

It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k⎯⎯=kc/ωpe (normalized by the electron skin depth) and the obliqueness, k⊥/k|| , where k⊥,|||| are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k⎯⎯>>1 and k⊥>>k|| and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.

Ganguli, G.; Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.;

Published by: Physics of Plasmas      Published on: 01/2014

YEAR: 2014     DOI: 10.1063/1.4862032

Electromagnetic wave

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times.

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes

A nonstorm time enhancement of relativistic electrons in the outer radiation belt

Despite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13\textendash14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes\textquoteright apogee, which suggest a very interesting scenario: wave-particle interactions causing a PSD peak at ~ L* = 5.5 from where the electrons are then rapidly transported radially inward. This letter demonstrates, for the first time in detail, that geomagnetic storms are not necessary for causing dramatic enhancements in the outer radiation belt.

Schiller, Quintin; Li, Xinlin; Blum, Lauren; Tu, Weichao; Turner, Drew; Blake, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058485

Van Allen Probes

Observations of kinetic scale field line resonances

We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfv\ enic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi >> 1. The amplitude of these waves is such that E/Bo ≳ Ωi/k⊥ (E, Bo, and Ωi are the wave amplitude, background field strength, and ion gyro-frequency, respectively) leading to ion demagnetization and acceleration for multiple transitions through the wave potential.

Chaston, Christopher; Bonnell, J; Wygant, John; Mozer, Forrest; Bale, Stuart; Kersten, Kris; Breneman, Aaron; Kletzing, Craig; Kurth, William; Hospodarsky, George; Smith, Charles; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058507

Van Allen Probes

Observations of kinetic scale field line resonances

We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfv\ enic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi >> 1. The amplitude of these waves is such that E/Bo ≳ Ωi/k⊥ (E, Bo, and Ωi are the wave amplitude, background field strength, and ion gyro-frequency, respectively) leading to ion demagnetization and acceleration for multiple transitions through the wave potential.

Chaston, Christopher; Bonnell, J; Wygant, John; Mozer, Forrest; Bale, Stuart; Kersten, Kris; Breneman, Aaron; Kletzing, Craig; Kurth, William; Hospodarsky, George; Smith, Charles; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058507

Van Allen Probes

One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)

The Colorado Student Space Weather Experiment is a 3-unit (10cm \texttimes 10cm \texttimes 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 \texttimes 780 km, 65\textdegree orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program. The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On September 13, 2013, CSSWE completed one year of on-orbit operations. In this talk we will discuss the issues encountered with designing and operating a cubesat in orbit. Data from the mission will be presented and discussed in the larger context of ionospheric and magnetospheric physics.

Palo, Scott; Gerhardt, David; Li, Xinlin; Blum, Lauren; Schiller, Quintin; Kohnert, Rick;

Published by:       Published on: 01/2014

YEAR: 2014     DOI: 10.1109/USNC-URSI-NRSM.2014.6928087

artificial satellites; atmospheric measuring apparatus; Ionosphere; Magnetic Storms; Magnetosphere; Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased >90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere.

Foster, J.; Erickson, P.; Baker, D.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Reeves, G.; Thaller, S.; Spence, H.; Shprits, Y; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058438

Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased >90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere.

Foster, J.; Erickson, P.; Baker, D.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Reeves, G.; Thaller, S.; Spence, H.; Shprits, Y; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058438

Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased >90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere.

Foster, J.; Erickson, P.; Baker, D.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Reeves, G.; Thaller, S.; Spence, H.; Shprits, Y; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058438

Van Allen Probes

Rotationally driven zebra stripes in Earth s inner radiation belt

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth\textquoterights rotation can change the velocity of trapped particles by only about 1\textendash2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth\textquoterights inner radiation belt are organized in regular, highly structured and unexpected \textquoteleftzebra stripes\textquoteright, even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth\textquoterights rotation. Radiation-belt electrons are trapped in Earth\textquoterights dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth\textquoterights rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

Ukhorskiy, A; Sitnov, M.; Mitchell, D.; Takahashi, K; Lanzerotti, L.; Mauk, B.;

Published by: Nature      Published on: 01/2014

YEAR: 2014     DOI: 10.1038/nature13046

Magnetospheric physics; Van Allen Probes

2013

Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes

Energetic electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and comparing the two will clarify their utility in studies of atmospheric change. We determined ionospheric changes produced by the EEP measured by the POES spacecraft in ~250 overpasses of an imaging riometer in northern Finland. The ΔCNA modeled from the POES data is 10\textendash15 times less than the observed ΔCNA when the >30 keV flux is reported as <106 cm-2 s-1 sr-1. Above this level, there is relatively good agreement between the space-based and ground-based measurements. The discrepancy occurs mostly during periods of low geomagnetic activity, and we contend that weak diffusion is dominating the pitch angle scattering into the bounce loss cone at these times. A correction to the calculation using measurements of the trapped flux considerably reduces the discrepancy and provides further support to our hypothesis that weak diffusion leads to underestimates of the EEP.

Rodger, Craig; Kavanagh, Andrew; Clilverd, Mark; Marple, Steve;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019439

electron precipitation; POES; Radiation belts; riometery

Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times

The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been analyzed from all six years of its operation, and three fit types (power law, exponential, and kappa-type) have been applied to the precipitating flux observations. We show that the power law fit consistently provides the best representation of the flux and that the kappa-type is rarely valid. We also provide estimated uncertainties in the flux for this instrument as a function of energy. Average power law gradients for nontrapped particles have been determined for geomagnetically nondisturbed periods to get a typical global behavior of the spectra in the inner radiation belt, slot region, and outer radiation belt. Power law spectral gradients in the outer belt are typically -2.5 during quiet periods, changing to a softer spectrum of \~-3.5 during geomagnetic storms. The inner belt does the opposite, hardening from -4 during quiet times to \~-3 during storms. Typical outer belt e-folding values are \~200 keV, dropping to \~150 keV during geomagnetic storms, while the inner belt e-folding values change from \~120 keV to >200 keV. Analysis of geomagnetic storm periods show that the precipitating flux enhancements evident from such storms take approximately 13 days to return to normal values for the outer belt and slot region and approximately 10 days for the inner belt.

Whittaker, Ian; Gamble, Rory; Rodger, Craig; Clilverd, Mark; Sauvaud, \;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019228

DEMETER; electron spectral fit; Radiation belts

Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere

Trapped by Earth\textquoterights magnetic field far above the planet\textquoterights surface, the energetic particles that fill the radiation belts are a sign of the Sun\textquoterights influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA\textquoterights Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.

Schultz, Colin;

Published by: Eos, Transactions American Geophysical Union      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/eost.v94.5210.1002/2013EO520007

aurora; Magnetosphere; Radiation belts; Van Allen Probes

James Van Allen and His Namesake NASA Mission

In many ways, James A. Van Allen defined and \textquotedblleftinvented\textquotedblright modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.

Baker, D.; Hoxie, V.; Jaynes, A.; Kale, A.; Kanekal, S.; Li, X.; Reeves, G.; Spence, H.;

Published by: Eos, Transactions American Geophysical Union      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/eost.v94.4910.1002/2013EO490001

RBSP; Van Allen Probes

Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth\textquoterights Outer Radiation Belt

Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth\textquoterights outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230 000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1 000 000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

Mozer, F.; Bale, S.; Bonnell, J; Chaston, C.; Roth, I.; Wygant, J.;

Published by: Physical Review Letters      Published on: 12/2013

YEAR: 2013     DOI: 10.1103/PhysRevLett.111.235002

Van Allen Probes

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates <= 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma density is also a critical parameter. While the first-order cyclotron and the Landau resonances are dominant for hiss scattering < 2 MeV electrons, higher-order resonances become important and even dominant at intermediate pitch angles for ultrarelativistic (>= 3 MeV) electrons. Hiss-induced electron pitch angle evolution shows an initially rapid transport from high to lower pitch angles, with a gradual approach toward equilibrium, and a final exponential decay as a whole. Although hiss scattering rates near the loss cone control the pitch angle evolution and the ultimate loss of ultrarelativistic electrons, the scattering bottleneck significantly affects the loss rate and leads to characteristic top hat-shaped pitch angle distributions at energies < 1 MeV. Decay timescales are on the order of a few days, tens of days, and > 100 days for 500 keV, 2 MeV, and 5 MeV electrons, respectively, consistent with recent observations from the Van Allen Probes and indicating that scattering by hiss can realistically account for the long-term loss process and the pitch angle evolution of relativistic electrons in the plasmasphere following storm time injections.

Ni, Binbin; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019260

Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively launched to maintain an array of \~5 payloads spread across \~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes



  18      19      20      21      22      23