Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1197 entries in the Bibliography.


Showing entries from 901 through 950


2015

Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth\textquoterights magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth\textquoterights ring current and provides a realistic modeling of the Earth\textquoterights magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (\~1 MeV) and ring current (\~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth\textquoterights magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

Zhao, Lei; Yu, Yiqun; Delzanno, Gian; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020858

diffusion coefficients; Radiation belt; ring current

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

Electron precipitation from EMIC waves: a case study from 31 May 2013

On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, indicating substorm injection. Through detailed modelling of the combination of ground and satellite observations the characteristics of the EMIC-induced electron precipitation were identified as: latitudinal width of 2-3\textdegree or ΔL=1 Re, longitudinal width ~50\textdegree or 3 hours MLT, lower cut off energy 280 keV, typical flux 1\texttimes104 el. cm-2 sr-1 s-1 >300 keV. The lower cutoff energy of the most clearly defined EMIC rising tone in this study confirms the identification of a class of EMIC-induced precipitation events with unexpectedly low energy cutoffs of <400 keV.

Clilverd, Mark; Duthie, Roger; Hardman, Rachael; Hendry, Aaron; Rodger, Craig; Raita, Tero; Engebretson, Mark; Lessard, Marc; Danskin, Donald; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021090

electromagnetic ion-cyclotron; electron precipitation; radio propagation; satellite

An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.;

Published by: Space Weather      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015SW001168

geosynchronous

Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements

In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an additional loss mechanism is operational and efficient for these high energies. The most likely mechanism for explaining the observed loss at ultra-relativistic energies is scattering by the Electro-Magnetic Ion Cyclotron waves.

Drozdov, A; Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020637

EMIC waves; Long-term simulation; Van Allen Probes; VERB code

Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

Wang, Chengrui; Rankin, Robert; Zong, Qiugang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020761

drift-bounce resonance; Landau damping; ULF wave

Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

Wang, Chengrui; Rankin, Robert; Zong, Qiugang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020761

drift-bounce resonance; Landau damping; ULF wave

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001\textendash2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.

emec, F.; Santolik, O.; a, Hrb\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020814

equatorial noise; magnetosonic waves

Postmidnight depletion of the high-energy tail of the quiet plasmasphere

The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high-energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high-energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5\% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1\textendash4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the postmidnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes.

Sarno-Smith, Lois; Liemohn, Michael; Katus, Roxanne; Skoug, Ruth; Larsen, Brian; Thomsen, Michelle; Wygant, John; Moldwin, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020682

ion composition; Ionosphere; plasmasphere; postmidnight; quiet time magnetosphere; Van Allen Probes

Simulation of ULF wave modulated radiation belt electron precipitation during the 17 March 2013 storm

Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL balloon experiments, have observed this modulation at ULF wave frequencies [e.g. Foat et al., 1998; Millan et al., 2002; Millan, 2011]. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible [Brito et al., 2012]. 3D simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the LFM code, during a CME-shock event on 17 March 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of EMIC waves, which are not resolved in the MHD simulation. The arrival of a strong CME-shock, such as the one simulated, disrupts the electric and magnetic fields in the magnetosphere and causes significant changes in both components of momentum, pitch angle and L-shell of radiation belt electrons, which may cause them to precipitate into the loss cone.

Brito, T.; Hudson, M.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020838

precipitation; Radiation belts; Ulf; ULF modulation

Simulation of ULF wave modulated radiation belt electron precipitation during the 17 March 2013 storm

Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL balloon experiments, have observed this modulation at ULF wave frequencies [e.g. Foat et al., 1998; Millan et al., 2002; Millan, 2011]. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible [Brito et al., 2012]. 3D simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the LFM code, during a CME-shock event on 17 March 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of EMIC waves, which are not resolved in the MHD simulation. The arrival of a strong CME-shock, such as the one simulated, disrupts the electric and magnetic fields in the magnetosphere and causes significant changes in both components of momentum, pitch angle and L-shell of radiation belt electrons, which may cause them to precipitate into the loss cone.

Brito, T.; Hudson, M.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020838

precipitation; Radiation belts; Ulf; ULF modulation

Study of EMIC wave excitation using direct ion measurements

With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15\% of the total ions, but about 85\% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He-band waves but enhances the O-band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

Min, Kyungguk; Liu, Kaijun; Bonnell, John; Breneman, Aaron; Denton, Richard; Funsten, Herbert; Jahn, öerg-Micha; Kletzing, Craig; Kurth, William; Larsen, Brian; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020717

EMIC wave excitation; observation; linear theory and hybrid simulation; Van Allen Probes

Study of EMIC wave excitation using direct ion measurements

With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15\% of the total ions, but about 85\% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He-band waves but enhances the O-band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.

Min, Kyungguk; Liu, Kaijun; Bonnell, John; Breneman, Aaron; Denton, Richard; Funsten, Herbert; Jahn, öerg-Micha; Kletzing, Craig; Kurth, William; Larsen, Brian; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020717

EMIC wave excitation; observation; linear theory and hybrid simulation; Van Allen Probes

BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and the Geostationary Operational Environmental Satellite (GOES) satellites were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explains the absence of loss at this location. ULF waves were found to be correlated withthe structure of the precipitation. We demonstrate how BARREL can monitor precipitation following a ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation.

Halford, A.; McGregor, S.; Murphy, K.; Millan, R.; Hudson, M.; Woodger, L.; Cattel, C.; Breneman, A.; Mann, I.; Kurth, W.; Hospodarsky, G.; Gkioulidou, M.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020873

BARREL; Van Allen Probes

BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and the Geostationary Operational Environmental Satellite (GOES) satellites were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explains the absence of loss at this location. ULF waves were found to be correlated withthe structure of the precipitation. We demonstrate how BARREL can monitor precipitation following a ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation.

Halford, A.; McGregor, S.; Murphy, K.; Millan, R.; Hudson, M.; Woodger, L.; Cattel, C.; Breneman, A.; Mann, I.; Kurth, W.; Hospodarsky, G.; Gkioulidou, M.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020873

BARREL; Van Allen Probes

BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and the Geostationary Operational Environmental Satellite (GOES) satellites were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explains the absence of loss at this location. ULF waves were found to be correlated withthe structure of the precipitation. We demonstrate how BARREL can monitor precipitation following a ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation.

Halford, A.; McGregor, S.; Murphy, K.; Millan, R.; Hudson, M.; Woodger, L.; Cattel, C.; Breneman, A.; Mann, I.; Kurth, W.; Hospodarsky, G.; Gkioulidou, M.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020873

BARREL; Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Troms\o and the satellite observed rising tone emissions of the lower-band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave\textendashparticle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of sub-relativistic electrons and the pulsating aurora.

Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020690

EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes

Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

We study the formation process of an oxygen torus during the 12\textendash15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfv\ en waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M \~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0\textendash4.0 and L = 3.7\textendash4.5, respectively, on the morning side. The oxygen torus has M = 4.5\textendash8 amu and extends around the plasmapause that is identified at L\~3.2\textendash3.9. We find that during the initial phase, M is 4\textendash7 amu throughout the plasma trough and remains at \~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.

e, Nos\; Oimatsu, S.; Keika, K.; Kletzing, C.; Kurth, W.; De Pascuale, S.; Smith, C.; MacDowall, R.; Nakano, S.; Reeves, G.; Spence, H.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020593

inner magnetosphere; magnetic storm; oxygen torus; plasmasphere; ring current; ULF waves; Van Allen Probes

The global context of the 14 November, 2012 storm event

From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause ~20\textendash30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in-situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in-situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet.

Hwang, K.-J.; Sibeck, D.; Fok, M.-C.; Zheng, Y.; Nishimura, Y.; Lee, J.-J.; Glocer, A.; Partamies, N.; Singer, H.; Reeves, G.; Mitchell, D.; Kletzing, C.; Onsager, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020826

Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

In situ observations of EMIC waves in O + band by the Van Allen Probe A

Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.

Yu, Xiongdong; Yuan, Zhigang; Wang, Dedong; Li, Haimeng; Huang, Shiyong; Wang, Zhenzhen; Zheng, Qiao; Zhou, Mingxia; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063250

EMIC waves; O+ ion torus; oxygen band; Van Allen Probes

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3\textendash4 km s-1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ -103. During the event the spacecraft \textendash being on tailward stretched field lines ~0.5 RE outside the plasmapause that mapped into the ionosphere conjugate to the auroral undulations \textendash encountered intense poloidal ULF oscillations in the magnetic and electric fields. We identify the field oscillations to be the second harmonic mode along the magnetic field line through comparisons of the observed wave properties with theoretical predictions. The field oscillations were accompanied by oscillations in proton and electron fluxes. Most interestingly, both field and particle oscillations at the spacecraft had one-to-one association with the auroral luminosity oscillations around its footprint. Our findings strongly suggest that this auroral undulation event is closely linked to the generation of second harmonic poloidal waves

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3\textendash4 km s-1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ -103. During the event the spacecraft \textendash being on tailward stretched field lines ~0.5 RE outside the plasmapause that mapped into the ionosphere conjugate to the auroral undulations \textendash encountered intense poloidal ULF oscillations in the magnetic and electric fields. We identify the field oscillations to be the second harmonic mode along the magnetic field line through comparisons of the observed wave properties with theoretical predictions. The field oscillations were accompanied by oscillations in proton and electron fluxes. Most interestingly, both field and particle oscillations at the spacecraft had one-to-one association with the auroral luminosity oscillations around its footprint. Our findings strongly suggest that this auroral undulation event is closely linked to the generation of second harmonic poloidal waves

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes

Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager

We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3\textendash4 km s-1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ -103. During the event the spacecraft \textendash being on tailward stretched field lines ~0.5 RE outside the plasmapause that mapped into the ionosphere conjugate to the auroral undulations \textendash encountered intense poloidal ULF oscillations in the magnetic and electric fields. We identify the field oscillations to be the second harmonic mode along the magnetic field line through comparisons of the observed wave properties with theoretical predictions. The field oscillations were accompanied by oscillations in proton and electron fluxes. Most interestingly, both field and particle oscillations at the spacecraft had one-to-one association with the auroral luminosity oscillations around its footprint. Our findings strongly suggest that this auroral undulation event is closely linked to the generation of second harmonic poloidal waves

Motoba, T.; Takahashi, K.; Ukhorskiy, A.; Gkioulidou, M.; Mitchell, D.; Lanzerotti, L.; Korotova, G.; Donovan, E.; Wygant, J.; Kletzing, C.; Kurth, W.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020863

Van Allen Probes

Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data

We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the \~1 mHz to \~8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L and Kp. The L dependence of inline image is systematically studied and is shown to depend on Kp. More significantly, we conclude that inline imageis the dominant term driving radial diffusion, typically exceeding inline image by 1\textendash2 orders of magnitude.

Ali, Ashar; Elkington, Scot; Tu, Weichao; Ozeke, Louis; Chan, Anthony; Friedel, Reiner;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020419

CRRES; diffusion coefficients; radial diffusion; ULF waves

Modeling inward diffusion and slow decay of energetic electrons in the Earth\textquoterights outer radiation belt

A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the essential features of the observed electron flux evolution. The decay timescales and the pitch angle distributions in our simulation are consistent with the Van Allen Probes observations over multiple energy channels. Our study suggests that the quiet-time energetic electron dynamics are effectively controlled by inward radial diffusion and pitch angle scattering due to a combination of plasmaspheric hiss and EMIC waves in the Earth\textquoterights radiation belts.

Ma, Q.; Li, W.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062977

pitch angle scattering; radiation belts modeling; Van Allen Probes; Van Allen Probes observations

Modeling sub-auroral polarization streams (SAPS) during the March 17, 2013 storm

The sub-auroral polarization streams (SAPS) are one of the most important features in representing magnetosphere-ionosphere coupling processes. In this study, we use a state-of-the-art modeling framework that couples an inner magnetospheric ring current model RAM-SCB with a global MHD model BATS-R-US and an ionospheric potential solver to study the SAPS that occurred during the March 17, 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the mid-latitude regions. Results show that the model captures the SAPS at sub-auroral latitudes, where Region-2 field-aligned currents (FACs) flow down to the ionosphere and the conductance is lower than in the higher-latitude auroral zone. Comparisons to observations such as FACs observed by AMPERE, cross-track ion drift from DMSP, and in-situ electric field observations from the Van Allen Probes indicate that the model generally reproduces the global dynamics of the Region-2 FACs, the position of SAPS along the DMSP, and the location of the SAPS electric field around L of 3.0 in the inner magnetosphere near the equator. While the model demonstrates double westward flow channels in the dusk sector (the higher-latitude auroral convection and the sub-auroral SAPS) and captures the mechanism of the SAPS, the comparison with ion drifts along DMSP trajectories shows an underestimate of the magnitude of the SAPS and the sensitivity to the specific location and time. The comparison of the SAPS electric field with that measured from the Van Allen Probes shows that the simulated SAPS electric field penetrates deeper than in reality, implying that the shielding from the Region-2 FACs in the model is not well represented. Possible solutions in future studies to improve the modeling capability include implementing a self-consistent ionospheric conductivity module from particle precipitation, coupling with the thermosphere-ionosphere chemical processes, and connecting the ionosphere with the inner magnetosphere by the stronger Region-2 FACs calculated in the inner magnetosphere model.

Yu, Yiqun; Jordanova, Vania; Zou, Shasha; Heelis, Roderick; Ruohoniemi, Mike; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020371

sub-auroral polarization streams; Van Allen Probes

Modeling sub-auroral polarization streams (SAPS) during the March 17, 2013 storm

The sub-auroral polarization streams (SAPS) are one of the most important features in representing magnetosphere-ionosphere coupling processes. In this study, we use a state-of-the-art modeling framework that couples an inner magnetospheric ring current model RAM-SCB with a global MHD model BATS-R-US and an ionospheric potential solver to study the SAPS that occurred during the March 17, 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the mid-latitude regions. Results show that the model captures the SAPS at sub-auroral latitudes, where Region-2 field-aligned currents (FACs) flow down to the ionosphere and the conductance is lower than in the higher-latitude auroral zone. Comparisons to observations such as FACs observed by AMPERE, cross-track ion drift from DMSP, and in-situ electric field observations from the Van Allen Probes indicate that the model generally reproduces the global dynamics of the Region-2 FACs, the position of SAPS along the DMSP, and the location of the SAPS electric field around L of 3.0 in the inner magnetosphere near the equator. While the model demonstrates double westward flow channels in the dusk sector (the higher-latitude auroral convection and the sub-auroral SAPS) and captures the mechanism of the SAPS, the comparison with ion drifts along DMSP trajectories shows an underestimate of the magnitude of the SAPS and the sensitivity to the specific location and time. The comparison of the SAPS electric field with that measured from the Van Allen Probes shows that the simulated SAPS electric field penetrates deeper than in reality, implying that the shielding from the Region-2 FACs in the model is not well represented. Possible solutions in future studies to improve the modeling capability include implementing a self-consistent ionospheric conductivity module from particle precipitation, coupling with the thermosphere-ionosphere chemical processes, and connecting the ionosphere with the inner magnetosphere by the stronger Region-2 FACs calculated in the inner magnetosphere model.

Yu, Yiqun; Jordanova, Vania; Zou, Shasha; Heelis, Roderick; Ruohoniemi, Mike; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020371

sub-auroral polarization streams; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within ten minutes, with different dipolarization signatures and duration. The first one is a dispersionless, short timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations, and in-situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within ten minutes, with different dipolarization signatures and duration. The first one is a dispersionless, short timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations, and in-situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission

We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations\textendashSpectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have developed selection criteria for the visual identification of these emissions, and we have compiled a list of more than 2000 events identified during the analyzed time period. The evolution of the Cluster orbit enables us to investigate a large range of McIlwain\textquoterights parameter from about L\~1.1 to L\~10. We demonstrate that EN can occur at almost all analyzed L shells. However, the occurrence rate is very low (<6\%) at L shells below L=2.5 and above L=8.5. EN mostly occurs between L=3 and L=5.5, and within 7\textdegree of the geomagnetic equator, reaching 40\% occurrence rate. This rate further increases to more than 60\% under geomagnetically disturbed conditions. Analysis of occurrence rates as a function of magnetic local time (MLT) shows strong variations outside of the plasmasphere (with a peak around 15 MLT), while the occurrence rate inside the plasmasphere is almost independent on MLT. This is consistent with the hypothesis that EN is generated in the afternoon sector of the plasmapause region and propagates both inward and outward.

a, Hrb\; Santolik, O.; emec, F.; a, Mac\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020268

equatorial noise; magnetosonic waves; plasmasphere; Radiation belts

On the use of drift echoes to characterize on-orbit sensor discrepancies

We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel\textquoterights drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2 MeV.

O\textquoterightBrien, T.P.; Claudepierre, S.G.; Looper, M.D.; Blake, J.B.; Fennell, J.F.; Clemmons, J.H.; Roeder, J.L.; Kanekal, S.G.; Manweiler, J.W.; Mitchell, D.G.; Gkioulidou, M.; Lanzerotti, L.J.; Spence, H.E.; Reeves, G.D.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020859

Van Allen Probes

On the use of drift echoes to characterize on-orbit sensor discrepancies

We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel\textquoterights drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2 MeV.

O\textquoterightBrien, T.P.; Claudepierre, S.G.; Looper, M.D.; Blake, J.B.; Fennell, J.F.; Clemmons, J.H.; Roeder, J.L.; Kanekal, S.G.; Manweiler, J.W.; Mitchell, D.G.; Gkioulidou, M.; Lanzerotti, L.J.; Spence, H.E.; Reeves, G.D.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020859

Van Allen Probes

On the use of drift echoes to characterize on-orbit sensor discrepancies

We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel\textquoterights drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2 MeV.

O\textquoterightBrien, T.P.; Claudepierre, S.G.; Looper, M.D.; Blake, J.B.; Fennell, J.F.; Clemmons, J.H.; Roeder, J.L.; Kanekal, S.G.; Manweiler, J.W.; Mitchell, D.G.; Gkioulidou, M.; Lanzerotti, L.J.; Spence, H.E.; Reeves, G.D.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020859

Van Allen Probes

Ecohydrologic role of solar radiation on landscape evolution

Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, Homero; Vivoni, Enrique; Bras, Rafael;

Published by: Water Resources Research      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/wrcr.v51.210.1002/2014WR016169

catchment evolution; ecohydrology; geomorphology; landscape evolution; solar radiation; vegetation dynamics

Ecohydrologic role of solar radiation on landscape evolution

Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, Homero; Vivoni, Enrique; Bras, Rafael;

Published by: Water Resources Research      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/wrcr.v51.210.1002/2014WR016169

catchment evolution; ecohydrology; geomorphology; landscape evolution; solar radiation; vegetation dynamics

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L<=4 injections are limited in energy to <=250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in the Pi 2 frequency range inside the plasmasphere. These observations demonstrate that injections occur at very low L-shells and may play an important role for inner zone electrons.

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L<=4 injections are limited in energy to <=250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in the Pi 2 frequency range inside the plasmasphere. These observations demonstrate that injections occur at very low L-shells and may play an important role for inner zone electrons.

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L<=4 injections are limited in energy to <=250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in the Pi 2 frequency range inside the plasmasphere. These observations demonstrate that injections occur at very low L-shells and may play an important role for inner zone electrons.

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes



  17      18      19      20      21      22