Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1225 entries in the Bibliography.


Showing entries from 1101 through 1150


2013

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by \~15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the \textquotedbllefthighest quality\textquotedblright events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of \~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (\~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (\~3000 fA/cm2) and provide sufficient sensitivity (\~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of \~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (\~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (\~3000 fA/cm2) and provide sufficient sensitivity (\~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of \~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (\~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (\~3000 fA/cm2) and provide sufficient sensitivity (\~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of \~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (\~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (\~3000 fA/cm2) and provide sufficient sensitivity (\~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18\textendash19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial features of precipitation bands for the first time. We estimate the net electron loss due to the precipitation bands and find that ~20 such events could empty the entire outer belt. This study suggests that precipitation bands play a critical role in radiation belt losses.

Blum, L.; Schiller, Q.; Li, X.; Millan, R.; Halford, A.; Woodger, L.;

Published by: Geophysical Research Letters      Published on: 11/2013

YEAR: 2013     DOI: 10.1002/2013GL058546

CubeSats; precipitation; Radiation belts; Van Allen Probes

A Particle Accelerator in the Radiation Belts

Satellites in the radiation belts reveal plasma structures that can jumpstart the acceleration of electrons to very high energies.

Zimbardo, Gaetano;

Published by: Physics      Published on: 11/2013

YEAR: 2013     DOI: 10.1103/Physics.6.131

RBSP; Van Allen Probes

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from \~20 keV to \~1 MeV. RBSPICE will also measure electrons over the energy range \~25 keV to \~1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from \~20 keV to \~1 MeV. RBSPICE will also measure electrons over the energy range \~25 keV to \~1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10o inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) will follow slightly different orbits and will lap each other four times per year, offering simultaneous measurements over a range of observatory separation distances. A description of the observatory environment is provided along with protection for sensitive electronics to support operations in the harsh radiation belt environment. Spacecraft and subsystem key characteristics and instrument accommodations are included that allow the RBSP science objectives to be met.

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth\textquoterights Radiation Belt High-Energy Particle Populations

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to \~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10-2\textendash106 particles/cm2 s sr MeV) and energy spectra (ΔE/E\~25 \%) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

Baker, D.; Kanekal, S.; Hoxie, V.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Bolton, B.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Stevens, K.; Wallace, J.; Yehle, A.; Spence, H.; Friedel, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9950-9

RBSP; Van Allen Probes

The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth\textquoterights Radiation Belt High-Energy Particle Populations

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to \~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10-2\textendash106 particles/cm2 s sr MeV) and energy spectra (ΔE/E\~25 \%) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

Baker, D.; Kanekal, S.; Hoxie, V.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Bolton, B.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Stevens, K.; Wallace, J.; Yehle, A.; Spence, H.; Friedel, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9950-9

RBSP; Van Allen Probes

The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth\textquoterights Radiation Belt High-Energy Particle Populations

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to \~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10-2\textendash106 particles/cm2 s sr MeV) and energy spectra (ΔE/E\~25 \%) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

Baker, D.; Kanekal, S.; Hoxie, V.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Bolton, B.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Stevens, K.; Wallace, J.; Yehle, A.; Spence, H.; Friedel, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9950-9

RBSP; Van Allen Probes

The Relativistic Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission

The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from \~60 MeV to \~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth\textquoterights magnetosphere.

Mazur, J.; Friesen, L.; Lin, A.; Mabry, D.; Katz, N.; Dotan, Y.; George, J.; Blake, J.; LOOPER, M; Redding, M.; textquoterightBrien, T.; Cha, J.; Birkitt, A.; Carranza, P.; Lalic, M.; Fuentes, F.; Galvan, R.; McNab, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9926-9

RBSP; Van Allen Probes

The Relativistic Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission

The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from \~60 MeV to \~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth\textquoterights magnetosphere.

Mazur, J.; Friesen, L.; Lin, A.; Mabry, D.; Katz, N.; Dotan, Y.; George, J.; Blake, J.; LOOPER, M; Redding, M.; textquoterightBrien, T.; Cha, J.; Birkitt, A.; Carranza, P.; Lalic, M.; Fuentes, F.; Galvan, R.; McNab, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9926-9

RBSP; Van Allen Probes

The Relativistic Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission

The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from \~60 MeV to \~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth\textquoterights magnetosphere.

Mazur, J.; Friesen, L.; Lin, A.; Mabry, D.; Katz, N.; Dotan, Y.; George, J.; Blake, J.; LOOPER, M; Redding, M.; textquoterightBrien, T.; Cha, J.; Birkitt, A.; Carranza, P.; Lalic, M.; Fuentes, F.; Galvan, R.; McNab, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9926-9

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA\textquoterights Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10\textquoterights of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results.

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth\textquoterights magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1\texttimes5.8 RE, 10o). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from \~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.

Mauk, B.; Fox, N.; Kanekal, S.; Kessel, R.; Sibeck, D.; UKHORSKIY, A;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9908-y

RBSP; Van Allen Probes

Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts

Radiation in space was the first discovery of the space age. Earth\textquoterights radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to wave\textendashparticle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies2, with the additional medium narrow belt (long-lived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Earth\textquoterights atmosphere. Here we show that ultrarelativistic electrons can stay trapped in the outer zone and remain unaffected by the very-low-frequency plasma waves for a very long time owing to a lack of scattering into the atmosphere. The absence of scattering is explained as a result of ultrarelativistic particles being too energetic to resonantly interact with waves at low latitudes. This study shows that a different set of physical processes determines the evolution of ultrarelativistic electrons.

Shprits, Yuri; Subbotin, Dmitriy; Drozdov, Alexander; Usanova, Maria; Kellerman, Adam; Orlova, Ksenia; Baker, Daniel; Turner, Drew; Kim, Kyung-Chan;

Published by: Nature Physics      Published on: 11/2013

YEAR: 2013     DOI: 10.1038/nphys2760

RBSP; Van Allen Probes

Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements

In this study we present 3-D data assimilation using CRRES data and 3-D Versatile Electron Radiation Belt Model (VERB) using a newly developed operator-splitting method. Simulations with synthetic data show that the operator-splitting Kalman filtering technique proposed in this study can successfully reconstruct the underlying dynamic evolution of the radiation belts. The method is further verified by the comparison with the conventional Kalman filter. We applied the new approach to 3-D data assimilation of real data to globally reconstruct the dynamics of the radiation belts using pitch angle, energy, and L shell dependent CRRES observations. An L shell time cross section of the global data assimilation results for nearly equatorially mirroring particles and high and low values of the first adiabatic invariants clearly show the difference between the radial profiles of phase space density. At μ = 700 MeV/G cross section of the global reanalysis shows a clear peak in the phase space density, while at lower energy of 70 MeV/G the profiles are monotonic. Since the radial profiles are obtained from one global reanalysis, the differences in the profiles reflect the differences in the underlying physical processes responsible for the dynamic evolution of the radiation belt energetic and relativistic electrons.

Shprits, Yuri; Kellerman, Adam; Kondrashov, Dmitri; Subbotin, Dmitriy;

Published by: Geophysical Research Letters      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/grl.50969

data assimilation; Modeling; Radiation belts

Lithium Ion Battery Fault Management on the Van Allen Probes

The Van Allen Probes (formerly known as the Radiation Belt Storm Probes or RBSP) mission launched on 30 August 2012 as part of NASA\textquoterights Living With a Star (LWS) Program. The ultimate goal of the mission is to understand how populations of relativistic electrons and penetrating ions in the Earth\textquoterights Van Allen Radiation Belts are affected by the Sun. The mission consists of two nearly identical observatories orbiting in highly-elliptical Earth orbits. The two satellite system allows for the study of the spatial and temporal effects the Sun has on the Earth\textquoterights radiation belts. Each observatory is equipped with a suite of instruments designed to continuously study ions, electrons and the local magnetic and electric fields. A brief overview of the Van Allen Probe mission is presented with an emphasis on the power subsystem and the fault management system. A unique challenge encountered on the Van Allen Probes mission was the health monitoring and management of the Lithium Ion battery. The fault management system employed three different strategies to monitor and protect the health of the battery: a hardware implemented low voltage sense, a software implemented low voltage sense, and a low battery state of charge calculation (coulometry). The pros and cons of each of these strategies are further discussed with respect to fault management system design and the battery test data collected during the integration, test and environmental testing phases of development.

Smith, Evan; Butler, Michael; Fretz, Kristin; Wilhelm, Benjamin;

Published by:       Published on: 09/2013

YEAR: 2013     DOI: 10.2514/6.2013-5526

Van Allen Probes

Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results

1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctions in L* (for given μ, K). We quantitatively assess the relative goodness of each model for radiation belt applications. We also quantify the uncertainty in the model magnetic field magnitude and the related uncertainties in PSD, which has applications for modeling and particle data without concurrent magnetic field measurements. Using this technique, we show the error in PSD for an energy spectrum observed by the relativistic electron-proton telescope (REPT) is a factor of \~1.2 using the TS04 model.

Morley, S.; Henderson, M.; Reeves, G.; Friedel, R.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50909

RBSP; Van Allen Probes

Scattering rates of inner belt protons by EMIC waves: A comparison between test particle and diffusion simulations

Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test particle simulations and compare them to those of quasi-linear theory for quasi-monochromatic EMIC waves interacting with inner belt protons. We find that the quasi-linear solution is not sensitive to the frequency bandwidth for narrow distributions. Bounce-averaged diffusion coefficients from both approaches are in good agreement for all energies and pitch angles. The interaction with inner belt protons, therefore, can be addressed using quasi-linear diffusion codes, which allows faster exploration of parameter space.

de Soria-Santacruz, M.; Orlova, K.; Martinez-Sanchez, M.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50925

EMIC; inner belt; wave-particle interactions

Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons

[1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20\textendash500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5\textendash6 wave cycles, demonstrating peak electron flux modulations at energies ~60 keV. Our observation clearly shows electron drift resonance with the fundamental poloidal mode, the energy dependence of the amplitude and phase of the electron flux modulations providing strong evidence for such an interaction. Significantly, the observation highlights the importance of localized wave-particle interactions for understanding energetic particle dynamics in the inner magnetosphere, through the intermediary of ULF waves.

Claudepierre, S.; Mann, I.R.; Takahashi, K; Fennell, J.; Hudson, M.; Blake, J.; Roeder, J.; Clemmons, J.; Spence, H.; Reeves, G.; Baker, D.; Funsten, H.; Friedel, R.; Henderson, M.; Kletzing, C.; Kurth, W.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50901

RBSP; Van Allen Probes

Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons

[1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20\textendash500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5\textendash6 wave cycles, demonstrating peak electron flux modulations at energies ~60 keV. Our observation clearly shows electron drift resonance with the fundamental poloidal mode, the energy dependence of the amplitude and phase of the electron flux modulations providing strong evidence for such an interaction. Significantly, the observation highlights the importance of localized wave-particle interactions for understanding energetic particle dynamics in the inner magnetosphere, through the intermediary of ULF waves.

Claudepierre, S.; Mann, I.R.; Takahashi, K; Fennell, J.; Hudson, M.; Blake, J.; Roeder, J.; Clemmons, J.; Spence, H.; Reeves, G.; Baker, D.; Funsten, H.; Friedel, R.; Henderson, M.; Kletzing, C.; Kurth, W.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50901

RBSP; Van Allen Probes

Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas

A differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on electromagnetic ion cyclotron (EMIC) waves that scatter the ions. The idea is that EMIC waves may limit the highest ion intensities during acceleration phases of storms and substorms (~ hour) while other mechanisms (e.g., charge exchange) may account for losses below those limits and over longer periods of time. This approach is applied to published Earth magnetosphere energetic ion spectra (~ keV to ~1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for <100 keV indicate sculpting by just such a mechanism, but modifications of traditional KP parameters are needed to account for maximum fluxes up to 5.4 times greater than expected. Future work using the new capabilities of the Van Allen Probes mission will likely resolve outstanding uncertainties.

Mauk, B.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50789

energetic ions; Radiation belts; ring current; Van Allen Probes

Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction

Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L\~5. The observed wave period, Eφ/Br ratio and the 90\textdegree phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with \~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the \textquotedblleftfishbone\textquotedblright instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations.

Dai, L.; Takahashi, K; Wygant, J.; Chen, L.; Bonnell, J; Cattell, C.; Thaller, S.; Kletzing, C.; Smith, C.; MacDowall, R.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Funsten, H.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50800

RBSP; Van Allen Probes

Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction

Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L\~5. The observed wave period, Eφ/Br ratio and the 90\textdegree phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with \~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the \textquotedblleftfishbone\textquotedblright instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations.

Dai, L.; Takahashi, K; Wygant, J.; Chen, L.; Bonnell, J; Cattell, C.; Thaller, S.; Kletzing, C.; Smith, C.; MacDowall, R.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Funsten, H.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50800

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes



  20      21      22      23      24      25