Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1197 entries in the Bibliography.


Showing entries from 701 through 750


2016

Electric and Magnetic Radial Diffusion Coefficients Using the Van Allen Probes Data

ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the EMFISIS and the EFW instruments on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L*, Kp, and MLT as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit little to no energy dependence, resulting in simple analytic models for both components. More importantly, the electric component is larger than the magnetic component by one to two orders of magnitude for almost all L* and Kp; thus, the electric field perturbations are more effective in driving radial diffusion of charged particles in the inner magnetosphere. We also present a comparison of the Van Allen Probes radial diffusion coefficients, including the error estimates, with some of the previous published results. This allows us to gauge the large amount of uncertainty present in such estimates.

Ali, Ashar; Malaspina, David; Elkington, Scot; Jaynes, Allison; Chan, Anthony; Wygant, John; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA023002

Electric and Magnetic Components; radial diffusion; RBSP; Van Allen Probes

Electric and Magnetic Radial Diffusion Coefficients Using the Van Allen Probes Data

ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the EMFISIS and the EFW instruments on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L*, Kp, and MLT as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit little to no energy dependence, resulting in simple analytic models for both components. More importantly, the electric component is larger than the magnetic component by one to two orders of magnitude for almost all L* and Kp; thus, the electric field perturbations are more effective in driving radial diffusion of charged particles in the inner magnetosphere. We also present a comparison of the Van Allen Probes radial diffusion coefficients, including the error estimates, with some of the previous published results. This allows us to gauge the large amount of uncertainty present in such estimates.

Ali, Ashar; Malaspina, David; Elkington, Scot; Jaynes, Allison; Chan, Anthony; Wygant, John; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA023002

Electric and Magnetic Components; radial diffusion; RBSP; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from ~130 keV to >500 keV, with each dipolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

Highly energetic electrons in the Earth\textquoterights Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300\textendash2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.810.1002/2016JA022775

distribution of chorus wave intensities in the inner magnetosphere; inner magnetosphere; Radiation belts; scale size of chorus wave packets; Van Allen Probes; Wave-particle interaction

Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022596

electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes

Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022596

electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes

The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes

Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β||e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with inline image and (ii) relatively small-amplitude, oblique waves with inline image. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.

Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard; Reeves, Geoffrey; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070084

beta parallel; electron temperature anisotropy; marginally stable state; oblique waves; quasi-parallel waves; Van Allen Probes; whistler mode chorus waves

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. The spectral evolution manifests the characteristics of adiabatic acceleration and density increase of oxygen ions. Warm (0.1\textendash10 keV) oxygen measured by the Helium, Oxygen, Proton, and Electron (HOPE) instrument was enhanced prior to the storm mostly in magnetic field-aligned directions. The most reasonable scenario of this event is that warm oxygen ions that preexisted in the inner magnetosphere were picked up and adiabatically transported and accelerated by spatially localized, temporarily impulsive electric fields.

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

Direct evidence for EMIC wave scattering of relativistic electrons in space

Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth\textquoterights outer radiation belt.

Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022521

electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction

Direct evidence for EMIC wave scattering of relativistic electrons in space

Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth\textquoterights outer radiation belt.

Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022521

electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

Local time variations of high-energy plasmaspheric ion pitch angle distributions

Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1\textendash10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results characterize the nature of the dearth of the near 90\textdegree pitch angle 1\textendash10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1\textendash10 eV H+ fluxes at different levels of geomagnetic activity.

Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; Larsen, Brian; Moldwin, Mark; Katus, Roxanne; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2015JA022301

algorithm; Magnetosphere; pitch angles; plasmasphere; spacecraft potential corrections; Van Allen Probes

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simulations show that the relativistic electron loss in the region L = 4.5\textendash6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simulations show that the relativistic electron loss in the region L = 4.5\textendash6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simulations show that the relativistic electron loss in the region L = 4.5\textendash6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

Statistical Properties of the Radiation Belt Seed Population

We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of 100s of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.

Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022652

Phase space density; Radiation belt; seed population; Van Allen Probes

ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A

We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04\textendash06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04\textendash06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisphere. Using cross-correlation analysis, we did, for the first time, time delay analysis of a conjugate ELF/VLF event between ground and space, finding +2 to +4 s (ATH first) for the QP and -3 s (RBSP A first) for the pulse. Using backward tracing from ATH to the geomagnetic equator and forward tracing from the equator to RBSP A, based on plasmaspheric density observed by the spacecraft, we validate a possible propagation path for the QP emission which is consistent with the observed time delay.

Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; ik, Ondrej; Kurth, William;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2015JA022264

conjugate event; propagation; QP; Ray Tracing; time delay; Van Allen Probes; VLF/ELF

Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a datadriven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave\textendashparticle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1038/nphys3799

Astrophysical plasmas; Magnetospheric physics; Van Allen Probes

How quickly, how deeply, and how strongly can dynamical outer boundary conditions impact Van Allen radiation belt morphology?

Here we examine the speed, strength, and depth of the coupling between dynamical variations of ultrarelativistic electron flux at the outer boundary and that in the heart of the outer radiation belt. Using ULF wave radial diffusion as an exemplar, we show how changing boundary conditions can completely change belt morphology even under conditions of identical wave power. In the case of ULF wave radial diffusion, the temporal dynamics of a new source population or a sink of electron flux at the outer plasma sheet boundary can generate a completely opposite response which reaches deep into the belt under identical ULF wave conditions. Very significantly, here we show that such coupling can occur on timescales much faster than previously thought. We show that even on timescales ~1 h, changes in the outer boundary electron population can dramatically alter the radiation belt flux in the heart of the belt. Importantly, these flux changes can at times occur on timescales much faster than the L shell revisit time obtained from elliptically orbiting satellites such as the Van Allen Probes. We underline the importance of such boundary condition effects when seeking to identify the physical processes which explain the dominant behavior of the Van Allen belts. Overall, we argue in general that the importance of temporal changes in the boundary conditions is sometimes overlooked in comparison to the pursuit of (ever) increasingly accurate estimates of wave power and other wave properties used in empirical representations of wave transport and diffusion rates.

Mann, Ian; Ozeke, Louis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022647

Radiation belt; ULF waves; Van Allen belt; Van Allen Probes

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm

Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF transmitter signals extend beyond the eroded plasmapause, electron loss processes set up near the outer extent of the VLF bubble create an earthward limit to the region of local acceleration near L = 2.8 as MeV electrons are scattered into the atmospheric loss cone.

Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022509

barrier; Plasmapause; storm; Van Allen Probes; VLF

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms

Interactions between interplanetary (IP) shocks and the Earth\textquoterights magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. However, the fast acceleration in the perpendicular direction cannot solely be explained by E \texttimes B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.

Yue, Chao; Li, Wen; Nishimura, Yukitoshi; Zong, Qiugang; Ma, Qianli; Bortnik, Jacob; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan; Kletzing, Craig; Wygant, John; Nicolls, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022808

adiabatic accelerations; enhancement of low-energy ion flux; ionospheric ion outflows; response to IP shocks; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a \textquotedblleftseed\textquotedblright electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a \textquotedblleftseed\textquotedblright electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts

In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (<=3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp >= 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.

Ripoll, J.; Loridan, V.; Cunningham, G.; Reeves, G.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2015JA022207

Radiation belts; Van Allen Probes

What effect do substorms have on the content of the radiation belts?

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV \textquotedblleftseed\textquotedblright population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1\textendash3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

Forsyth, C.; Rae, I.; Murphy, K.; Freeman, M.; Huang, C.-L.; Spence, H.; Boyd, A.; Coxon, J.; Jackman, C.; Kalmoni, N.; Watt, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022620

enhancements; losses; Radiation belts; substorm

What effect do substorms have on the content of the radiation belts?

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV \textquotedblleftseed\textquotedblright population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1\textendash3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

Forsyth, C.; Rae, I.; Murphy, K.; Freeman, M.; Huang, C.-L.; Spence, H.; Boyd, A.; Coxon, J.; Jackman, C.; Kalmoni, N.; Watt, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022620

enhancements; losses; Radiation belts; substorm

What effect do substorms have on the content of the radiation belts?

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV \textquotedblleftseed\textquotedblright population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1\textendash3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

Forsyth, C.; Rae, I.; Murphy, K.; Freeman, M.; Huang, C.-L.; Spence, H.; Boyd, A.; Coxon, J.; Jackman, C.; Kalmoni, N.; Watt, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022620

enhancements; losses; Radiation belts; substorm

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere, but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere, but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, demonstrate that the combined resonant scattering by the simultaneous three-band EMIC waves is overall dominated by He+ band wave diffusion, mainly due to its dominance over the wave power (the mean wave amplitudes are approximately 0.4 nT, 1.6 nT, and 0.15 nT for H+, He+, and O+ bands, respectively). Near the loss cone, while 2\textendash3 MeV electrons undergo pitch angle scattering at a rate of the order of 10-6\textendash10-5 s-1, 5\textendash10 MeV electrons can be diffused more efficiently at a rate of the order of 10-3\textendash10-2 s-1, which approaches the strong diffusion level and results in a moderately or heavily filled loss cone for the atmospheric loss. The corresponding electron loss timescales (i.e., lifetimes) vary from several days at the energies of ~2 MeV to less than 1 h at ~10 MeV. This case study indicates the leading contribution of He+ band waves to radiation belt relativistic electron losses during the coexistence of three EMIC wave bands and suggests that the roles of different EMIC wave bands in the relativistic electron dynamics should be carefully incorporated in future modeling efforts.

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, demonstrate that the combined resonant scattering by the simultaneous three-band EMIC waves is overall dominated by He+ band wave diffusion, mainly due to its dominance over the wave power (the mean wave amplitudes are approximately 0.4 nT, 1.6 nT, and 0.15 nT for H+, He+, and O+ bands, respectively). Near the loss cone, while 2\textendash3 MeV electrons undergo pitch angle scattering at a rate of the order of 10-6\textendash10-5 s-1, 5\textendash10 MeV electrons can be diffused more efficiently at a rate of the order of 10-3\textendash10-2 s-1, which approaches the strong diffusion level and results in a moderately or heavily filled loss cone for the atmospheric loss. The corresponding electron loss timescales (i.e., lifetimes) vary from several days at the energies of ~2 MeV to less than 1 h at ~10 MeV. This case study indicates the leading contribution of He+ band waves to radiation belt relativistic electron losses during the coexistence of three EMIC wave bands and suggests that the roles of different EMIC wave bands in the relativistic electron dynamics should be carefully incorporated in future modeling efforts.

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes

A statistical examination on the spatial distributions of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes against varying levels of geomagnetic activity (i.e., AE and SYM-H) and dynamic pressure has been performed. Measurements taken by the Electric and Magnetic Field Instrument Suite and Integrated Science for the first full magnetic local time (MLT) precession of the Van Allen Probes (September 2012\textendashJune 2014) are used to identify over 700 EMIC wave events. Spatial distributions of EMIC waves are found to vary depending on the level of geomagnetic activity and solar wind dynamic pressure. EMIC wave events were observed under quiet (AE <= 100 nT, 325 wave events), moderate (100 nT < AE <= 300 nT, 218 wave events), and disturbed (AE > 300 nT, 228 wave events) geomagnetic conditions and are primarily observed in the prenoon sector (~800 < MLT <= ~1100) at L ≈ 5.5 during quiet activity times. As AE increases to disturbed levels, the peak occurrence rates shift to the afternoon sector (1200 < MLT <= 1800) between L = 4 and L = 6. A majority of EMIC wave events (~56\%) were observed during nonstorm times (defined by SYM-H). Consistent with the quiet AE levels, nonstorm EMIC waves are observed in the prenoon sector. EMIC waves observed through the duration of a geomagnetic storm are primarily located in the afternoon sector. High solar wind pressure (Pdyn > 3 nPa) correlates to mostly afternoon EMIC wave observations.

Saikin, A.; Zhang, J.; Smith, C.; Spence, H.; Torbert, R.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022523

EMIC waves; geomagnetic activity; solar wind dynamic pressure; spatial distributions; Van Allen Probes

Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblright with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from \~1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblright with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from \~1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements

Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30\textendash60 s is observable during close conjunction events but is lost as spacecraft separations exceed ~1 Earth Radii.

Blum, L.; Agapitov, O.; Bonnell, J.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068799

coherence scales; EMIC waves; multipoint measurements; Van Allen Probes



  13      14      15      16      17      18