Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 435 entries in the Bibliography.


Showing entries from 51 through 100


2020

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce-averaged PA diffusion coefficients from three types of waves (hiss, lightning-generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi-linear theory, while the CRAND source follows the results in Xiang et al. (2019, https://doi.org/10.1029/2018GL081730). The simulation results indicate that both LGW and VLF transmitter waves can enhance loss and weaken the top hat PA distribution induced by hiss waves. For 470 keV electrons at L = 2.5, simulation results without CRAND show a much quicker decrease than observations from the Van Allen Probes. After including CRAND, simulated electron flux variations reproduce satellite observations, suggesting that CRAND is an important source for hundreds of keV electrons in the slot region during quiet times. The balance between the CRAND source and loss due to wave-particle interactions provides a lower limit to relativistic electron fluxes in the slot region, which can act as an important reference point for instrument calibration when a true background level is warranted.

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave amplitudes are typically strong at L < 3 with an occurrence rate up to ~30\% on the nightside. The lifetime calculation indicates that LGWs play an important role in scattering electrons from tens of keV to several MeV at L < ~2.5. Our newly constructed LGW models are critical for evaluating the global effects of LGWs on energetic electron loss at L < 4.

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time-averaged values reaching ~3–10 erg/cm2/s when AE ≥ 500 nT.

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the time-of-flight technique based on the pitch angle dependence of electron drift velocities, the “boomerang-shaped” stripes are inferred to originate from straight stripes at the time and location covered by Probe B. Given that straight stripes were indeed observed by Probe B, our observations strongly support the charged particle interacting with azimuthally localized ULF waves. A new method is provided to identify the location of ULF wave-particle interaction on the basis of remote observations of electron flux modulations.

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

The Modulation of Plasma and Waves by Background Electron Density Irregularities in the Inner Magnetosphere

The background cold electron density plays an important role in plasma and wave dynamics. Here, we investigate an event with clear modulation of the particle fluxes and wave intensities by background electron density irregularities based on Van Allen Probes observations. The energies at the peak fluxes of protons and Helium ions of 100 eV to several keV are well correlated with the total electron density variation. Intense electromagnetic ion cyclotron (EMIC) and magnetosonic (MS) waves are simultaneously observed in the high-density regions and disappear in low-density regions. Based on the linear theory of wave growth, the EMIC waves are generated by the ~10 keV protons, while most MS waves are generated by the positive gradient of proton phase space density at several hundred eV in the high-density regions. Our results indicate the importance of background plasma density structures in generation of plasma waves by unstable ion distributions.

Yue, Chao; Ma, Qianli; Jun, Chae-Woo; Bortnik, Jacob; Zong, Qiugang; Zhou, Xuzhi; Jang, Eunjin; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088855

electron density irregularities; electromagnetic ion cyclotron; magnetosonic waves; suprathermal particles; Wave-particle interaction; wave growth rate; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double-peaked (L = 3.5 and 4.5, respectively) flux-versus-L-shell profile in the outer belt, which lasted for 2–3 days. During the time interval of such transient three-belt structure, the energy-versus-L spectrogram shows novel distributions differing from both “S-shaped” and “V-shaped” spectrograms reported previously. Such peculiar distribution also illustrates the energy-dependent occurrence of the three-belt profile. The gradual formation of “reversed energy spectrum” at L ∼ 3.5 also indicates that hiss scattering inside the plasmapause contributed to the fast decay of sub-MeV remnant belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

Defining Radiation Belt Enhancement Events Based on Probability Distributions

We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of times, “events,” using variable flux thresholds to determine average event occurrence in arbitrary 11-year intervals (“cycles”). We define moderate, strong, and intense events as those that occur 100, 10, and 1 time per cycle and identify the flux thresholds that produce those occurrence frequencies. The methodology does not depend on any ancillary data set (e.g., solar wind or geomagnetic conditions). We show event probabilities using GOES > 2 MeV fluxes and compare them against event probabilities using LANL 1.8–3.5 MeV fluxes. We present some examples of how the methodology picks out moderate, strong, and intense events and how those events are distributed in time: 1989 through 2018, which includes the declining phases of solar cycles 22, 23, and 24. We also provide an illustrative comparison of moderate and strong events identified in the geosynchronous data with Van Allen Probes observations across all L-shells. We also provide a catalog of start and stop times of moderate, strong, and intense events that can be used for future studies.

Reeves, Geoffrey; Vandegriff, Elizabeth; Niehof, Jonathan; Morley, Steven; Cunningham, Gregory; Henderson, Michael; Larsen, Brian;

Published by: Space Weather      Published on: 06/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002528

Radiation belts; methods; geosynchronous; energetic particles; hazards; Solar Cycle; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing electron radial diffusion. To investigate details of such flux oscillations, particle-tracing simulations are conducted under the effect of realistic, broadband ULF electric and consistent magnetic fluctuations. Virtual detectors are simulated along spacecraft orbits and the results are compared to measurements. Through a parametric study, it is found that the width of electron energy channels is a critical parameter affecting the observed amplitude of flux oscillations, with narrower energy channel widths enabling the observation of higher-amplitude flux oscillations; this potentially explains why such features were not observed regularly before the Van Allen Probes era, as previous spacecraft generally had lower energy resolution, which only enabled the observation of large-amplitude drift echoes following a storm or substorm. Results are confirmed using the Magnetic Electron Ion Spectrometer (MagEIS) ultrahigh energy resolution data. Energy width effects are quantified through a parametric simulation study that matches flux oscillation observations during a period that is characterized by extremely quiet conditions, where the Van Allen Probes observed flux oscillations over multiple days.

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Conjugate Observations of Quasiperiodic Emissions by the Van Allen Probes Spacecraft and Ground-Based Station Kannuslehto

Whistler mode waves observed in the Earth s inner magnetosphere at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity are called quasiperiodic (QP) emissions. Conjugate measurements of QP events at several different locations can be used to estimate their spatial extent and spatiotemporal variability. Results obtained using conjugate QP measurements provided by the ground-based station Kannuslehto (L≈5.5) and the Van Allen Probes spacecraft (L shells between about 1.1 and 6.5) between September 2012 and November 2017 are presented. Altogether, 26 simultaneously detected events were analyzed. The event modulation periods and frequency-time structures were generally the same at all observation points. Spatial separations of the spacecraft and the ground-based station during conjugate observations are typically within about 40° in azimuth and from about 1 to 3 in L shell. RBSP consistently observes events at lower L shells than Kannuslehto, with the event occurrence primarily inside of the plasmasphere. Ratios of Poynting fluxes observed by the spacecraft and on the ground are used to evaluate event intensity variations related to the spacecraft position. It is found that the intensity decreases considerably both at low L shells and outside of the plasmasphere. Finally, an event containing a gap in its frequency-time structure related to a sudden change of its properties is analyzed in detail.

Bezděková, B.; Němec, F.; Manninen, J.; Hospodarsky, G.; Santolik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027793

Van Allen Probes

Global Model of Whistler Mode Chorus in the Near-Equatorial Region (|λm|<  18°)

We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)-A and RBSP-B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A, THEMIS-D, and THEMIS-E. The new database allows us to probe the near-equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fce bands in the region 21–11 magnetic local time (MLT) from the plasmapause out to L∗ = 8 and beyond, especially near dawn. At higher frequencies, in the 0.4–0.6fce frequency bands, strong wave power is more tightly confined, typically being restricted to the postmidnight sector in the region 4

Meredith, Nigel; Horne, Richard; Shen, Xiao-Chen; Li, Wen; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087311

whistler mode chorus; wave-particle interactions; Radiation belts; Van Allen Probes

Lifetimes of Relativistic Electrons as Determined From Plasmaspheric Hiss Scattering Rates Statistics: Effects of ωpe/Ωce and Wave Frequency Dependence on Geomagnetic Activity

Whistler-mode hiss waves generally determine MeV electron lifetimes inside the plasmasphere. We use Van Allen Probes measurements to provide the first comprehensive statistical survey of plasmaspheric hiss-driven quasi-linear pitch-angle diffusion rates and lifetimes of MeV electrons as a function of L*, local time, and AE index, taking into account hiss power, electron plasma frequency to gyrofrequency ratio ωpe/Ωce, hiss frequency at peak power ωm, and cross correlations of these parameters. We find that during geomagnetically active periods with hiss observations, ωpe/Ωce and ωm decrease, leading to faster electron loss. We demonstrate that spatiotemporal variations of ωm and ωpe/Ωce with AE, together with wave power changes, significantly affect MeV electron loss, potentially leading to short lifetimes of less than 1 day. A parametric model of MeV electron lifetime driven by AE for L > 2.5 up to the plasmapause is developed and validated using Magnetic Electron Ion Spectrometer (MagEIS) electron flux decay database.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Claudepierre, S.; Hospodarsky, G.; Bonnell, J.;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088052

electron lifetimes; plasmasphere; hiss waves; wave-particle interactions; Van Allen Probes

Simultaneous Observations of Localized and Global Drift Resonance

In this study, we present Van Allen Probe observations showing that seed (hundreds of keV) and core ( 1 MeV) electrons can resonate with ultra-low-frequency (ULF) wave modes with distinctive m values simultaneously. An unusual electron energy spectrogram with double-banded resonant structure was recorded by energetic particle, composition, and thermal plasma (ECT)-magnetic electron ion spectrometer (MagEIS) and, meanwhile, boomerang stripes in pitch angle spectrogram appeared at the lower energy band. A localized drift resonance with m = 10 wave component was responsible for the resonant band peaked at ∼200 keV while a global drift resonance with m = 3 component gave rise to the upper band resonance peaked at ∼1 MeV. Time-Of-Flight on boomerang stripes suggested that the localized drift resonance with ∼200 keV electrons was confined within the plasmaspheric plume. Electron flux modulations were reproduced by numerical simulations in good consistency with the observations, supporting the scenario that localized and global drift resonance could coexist in the outer belt electron dynamics simultaneously.

Hao, Y.; Zhao, X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088019

drift resonance; ULF waves; Radiation Belt Dynamics; boomerang stripes; azimuthal wave number; multiple resonances; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fortuitous simultaneous observation of EMIC wave activity by the RBSP-B and Arase satellites in conjunction with ground-based observations of EEP by a subionospheric VLF network. We describe a simple method for determining the longitudinal extent of the EMIC source region based on these observations, calculating a width of 0.75 hr MLT and a drift rate of 0.67 MLT/hr. We describe how this may be applied to other similar EMIC wave events.

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

Published by: Geophysical Research Letters      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in the source region. Although most equatorial noise emissions are continuous in time, some events exhibit a clear quasiperiodic time modulation of the wave intensity, with typical modulation periods on the order of minutes. We analyze 72 such events (17 observed by the Cluster spacecraft, 55 observed by the Van Allen Probes spacecraft) for which high-resolution data were available. The analysis of the observed harmonic structure allows us to determine source radial distances of the events. It is found that the calculated source radial distances are generally close to the radial distances where the events were observed. The harmonic numbers where the events are generated range between about 12 and 30. Two events for which the spacecraft passed through the generation region were identified and analyzed. No simultaneous ultra-low-frequency magnetic field pulsations and no periodic plasma number density variations were observed. Although the in situ measured proton distribution functions were shown to be responsible for the wave growth, an insufficient resolution of the particle instruments prevented us from detecting a quasiperiodic modulation possibly present in the particle data.

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mode waves (1 ± 1.6 pT and 19 ± 59 μV/m). Extreme events (1/5,000) can reach 100 pT and contributes strongly to the mean power below L = 2. We find excellent correlations between World Wide Lightning Location Network-based power and wave amplitudes in space at various longitudes. We reveal strong dayside ionospheric damping of the LGW electric field. LGW amplitudes drop for L < 2, contrary to the Earth s intense equatorial lightning activity. We conclude that it is difficult for equatorial LGW to propagate and remain at L < 2.

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to urn:x-wiley:grl:media:grl60110:grl60110-math-0001 of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to urn:x-wiley:grl:media:grl60110:grl60110-math-0001 of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on:

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on:

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at different L s and energies, for example, 1.9 × 107/cm2-s-sr-MeV at 470 keV at L = 1.5 and 3.6 × 105/cm2-s-sr-MeV at 3.4 MeV at L = 4 (Van Allen Probes). We present the energy spectra of the electron flux upper limit at different L shells and find the measured upper flux limit to be at least three times higher than the predicted flux from the AE8/AE9 models, although the spectral shape is remarkably similar. We show that the average flux with an applied time lag is better correlated with the Dst index and that the time lag optimizing the correlation coefficient is larger at lower L and at higher energies. These findings present the underlying challenges to model the dynamic variation of relativistic electrons in the inner magnetosphere and are important information for space weather considerations.

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at different L s and energies, for example, 1.9 × 107/cm2-s-sr-MeV at 470 keV at L = 1.5 and 3.6 × 105/cm2-s-sr-MeV at 3.4 MeV at L = 4 (Van Allen Probes). We present the energy spectra of the electron flux upper limit at different L shells and find the measured upper flux limit to be at least three times higher than the predicted flux from the AE8/AE9 models, although the spectral shape is remarkably similar. We show that the average flux with an applied time lag is better correlated with the Dst index and that the time lag optimizing the correlation coefficient is larger at lower L and at higher energies. These findings present the underlying challenges to model the dynamic variation of relativistic electrons in the inner magnetosphere and are important information for space weather considerations.

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth\textquoterights Inner Magnetosphere

We investigate the global distribution and provide empirical models of fast magnetosonic waves using the combined observations by the magnetometer and waveform receiver on board Van Allen Probes. The magnetometer measurements of magnetosonic waves indicate a significant wave power within the frequency range from the helium gyrofrequency to 20 Hz at L >= 4 in the afternoon sector, both inside and outside the plasmapause. The waveform receiver measurements indicate a significant wave power from 20 Hz to the lower hybrid resonance frequency at L <= 5.5 near the dayside outside the plasmapause or in the afternoon sector inside the plasmapause. The sum of the wave powers from the two instruments provides the wave power distribution over the complete frequency range. The most significant root-mean-square wave amplitude of magnetosonic waves is typically 100\textendash200 pT inside or outside the plasmapause with a magnetic local time coverage of 30\textendash50\% during geomagnetically active times when AE* > 500 nT. The magnetosonic wave frequency increases with decreasing L shell following the trend of the proton gyrofrequency outside the plasmapause, indicating a close relation with the local wave generation. Inside the plasmapause, the dependence of wave frequency on L shell is weaker, and the wave frequency is more stable across L shells, indicating the wave propagation effects from the source located at higher L shells. We have performed polynomial fits of the global magnetosonic wave distribution and wave frequency spectra, which are useful in future radiation belt simulations.

Ma, Q.; Li, W.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA027407

Empirical Fitting; Global Survey; magnetosonic waves; Van Allen Probes; Van Allen Probes observation

Particle Dynamics in the Earth\textquoterights Radiation Belts: Review of Current Research and Open Questions

The past decade transformed our observational understanding of energetic particle processes in near-Earth space. An unprecedented suite of observational systems were in operation including the Van Allen Probes, Arase, MMS, THEMIS, Cluster, GPS, GOES, and LANL-GEO magnetospheric missions. They were supported by conjugate low-altitude measurements on spacecraft, balloons, and ground-based arrays. Together these significantly improved our ability to determine and quantify the mechanisms that control the build-up and subsequent variability of energetic particle intensities in the inner magnetosphere. The high-quality data from NASA\textquoterights Van Allen Probes are the most comprehensive in-situ measurements ever taken in the near-Earth space radiation environment. These observations, coupled with recent advances in radiation belt theory and modeling, including dramatic increases in computational power, has ushered in a new era, perhaps a \textquotedblleftgolden era,\textquotedblright in radiation belt research. We have edited a Journal of Geophysical Research: Space Science Special Collection dedicated to Particle Dynamics in the Earth\textquoterights Radiation Belts in which we gather the most recent scientific findings and understanding of this important region of geospace. This collection includes the results presented at the American Geophysical Union Chapman International Conference in Cascais, Portugal (03/2018) and many other recent and relevant contributions. The present article introduces and review the context, current research, and main questions that motivate modern radiation belt research divided into the following topics: (1) particle acceleration and transport, (2) particle loss, (3) the role of nonlinear processes, (4) new radiation belt modeling capabilities and the quantification of model uncertainties, and (5) laboratory plasma experiments.

Ripoll, Jean-Francois; Claudepierre, Seth; Ukhorskiy, Sasha; Colpitts, Chris; Li, Xinlin; Fennell, Joe; Crabtree, Chris;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA026735

inner magnetosphere; laboratory plasma experiments; Particle acceleration; particle loss; Radiation belts; Van Allen Probes

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecutive orbital passes) <400-keV electron enhancements during quiet periods. Our analysis reveals an incredibly cohesive observation that holds regardless of electron energies (~30 keV\textendash2.5 MeV) or geomagnetic conditions: the innermost Lpp is the innermost boundary of the initial energetic electron enhancements. Interestingly, the quantified energy-dependent relationship of the sudden, intense energetic electron enhancements, with respect to the innermost Lpp, also exhibit a very similar trend during both storm and nonstorm periods. In summary, the goal of this report is to provide a comprehensive quantification of this consistent relationship under various geomagnetic conditions, which will also enable better forecast and specification of energetic electrons in the inner magnetosphere.

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP-B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP-B and ground-magnetometer observations, where Pc5 pulsations are observed to drift-resonate with relativistic electrons on the duskside. Thus, Arase observed the drift-resonance signatures \textquotedblleftremotely,\textquotedblright whereas RBSP-B observed them \textquotedblleftlocally.\textquotedblright

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP-B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP-B and ground-magnetometer observations, where Pc5 pulsations are observed to drift-resonate with relativistic electrons on the duskside. Thus, Arase observed the drift-resonance signatures \textquotedblleftremotely,\textquotedblright whereas RBSP-B observed them \textquotedblleftlocally.\textquotedblright

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study

Six years of Van Allen Probes data are used to investigate cold plasmaspheric electrons affected by ultralow-frequency (ULF) waves in the inner magnetosphere (L<7) including spatial distributions, occurrence conditions, and resonant energy range. Events exhibit a global distribution within L= 4\textendash7 but preferentially occur at L\~5.5\textendash7 in the dayside, while there is higher occurrence rate in the duskside than dawnside. They can occur under different geomagnetic activities and solar wind velocities (VS), but the occurrence rates are increasing with larger AE, |SYMH|, and VS. These features are closely associated with the generation and propagation of ULF waves in Pc4 (45\textendash150 s) and Pc5 (150\textendash600 s) bands. Combined with electron observations from HOPE instrument, the resonant energies inferred from wave power indicate that cold electrons at ones to hundreds of electron volts can be affected by ULF waves. This study may shed new light on further investigations on the acceleration and transportation of cold plasmaspheric particles that would affect plasmaspheric material release to the Earth\textquoterights magnetosphere and instabilities for exciting various waves.

Ren, Jie; Zong, Q.; Zhou, X.; Spence, H.; Funsten, H.; Wygant, J.; Rankin, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA027009

Cold plasmaspheric electrons; drift-bounce resonance; ULF waves; Van Allen Probes; Wave-particle interaction

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts

Auroral kilometric radiation (AKR) can potentially produce serious damage to space-borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3\textendash6.5 and 00\textendash24 magnetic local time (MLT), with a higher occurrence on the nightside (20\textendash24 MLT and 00\textendash04 MLT) within L= 5\textendash6.5. All the AKR events are observed to be accompanied with suprathermal (\~1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to the dayside. The current study shows that AKR emissions from the remote sources are closely associated with electron injections.

Zhao, Wanli; Liu, Si; Zhang, Sai; Zhou, Qinghua; Yang, Chang; He, Yihua; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083944

Auroral kilometric radiation; global occurrence; Radiation belt; suprathermal electron flux enhancenments; Van Allen Probes

Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere

Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L-shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varies with L-shell, extending up to 12 kHz for L lower than 3. The effect is stronger in the afternoon, evening, and night sectors, consistent with more lightning and easier wave propagation through the ionosphere.

ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083918

DEMETER; Lightning; Van Allen Probes; whistler mode; WWLLN

Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth\textquoterights Inner Magnetosphere

Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen- and helium-band EMIC waves, respectively. Moreover, we found that magnetosonic waves can cause the resonant heating of thermal protons. Our study indicates the importance of energy transfer from the EMIC and magnetosonic waves to ions with different species at thermal energies.

Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083513

electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation

Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth\textquoterights Inner Magnetosphere

Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen- and helium-band EMIC waves, respectively. Moreover, we found that magnetosonic waves can cause the resonant heating of thermal protons. Our study indicates the importance of energy transfer from the EMIC and magnetosonic waves to ions with different species at thermal energies.

Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083513

electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation

Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates

A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi-linear diffusion as commonly assumed. We discuss the possible consequences of such a large amount of high-amplitude chorus waves and examine their characteristics that can influence the efficiency of nonlinear wave-particle interactions.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083833

chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size

Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates

A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi-linear diffusion as commonly assumed. We discuss the possible consequences of such a large amount of high-amplitude chorus waves and examine their characteristics that can influence the efficiency of nonlinear wave-particle interactions.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083833

chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size

Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >

During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low-latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the Balloon Array for RBSP Relativistic Electron Losses balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe A satellite (at postmidnight local time) showed clear butterfly distributions, and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar-orbiting Operational Environmental Satellite satellites, though tended to be confined to the dawn-dusk meridians.

Lessard, Marc; Paulson, Kristoff; Spence, Harlan; Weaver, Carol; Engebretson, Mark; Millan, Robyn; Woodger, Leslie; Halford, Alexa; Horne, Richard; Rodger, Craig; Hendry, Aaron;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026477

Van Allen Probes

Timescales for electron quasi-linear diffusion by lower-band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity

Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5\textendash5.5. Spatiotemporal variations of ωpe/Ωce with AE shape the evolution of electron energization in the outer belt, sometimes leading to very short time scales for quasi-linear megaelectron volt electron acceleration in agreement with Van Allen Probes observations.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083446

magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions

Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L-shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4-6 and 00-24 MLT, with a higher occurrence in the region of L=5-6 and 06-19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and tend to be more distinct with increasing geomagnetic activity.

Chen, Yaru; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082668

electron ring distribution; global occurrences; Radiation belt; Van Allen Probe observation; Van Allen Probes; waves



  1      2      3      4      5      6